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We study several parasitic effects on the implementation of a Josephson radiation comb generator (JRCG)

based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This

system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to

generate up to several hundreds of harmonics of the driving frequency. First we take into account how assuming

a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of this

device. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an

unavoidable source of errors in practical situations. We show that the role of the junction capacitance is in

general negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device.

The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect

can be limited up to a large extent with a suitable choice of fabrication parameters.

PACS numbers: 74.50.+r, 85.25.Dq, 06.20.fb, 04.40.Nr

I. INTRODUCTION

Over the last decade, important advancements in the field

of optical frequency combs have been reported1–3. These

have led to remarkable progresses in extending the accuracy of

atomic clocks to the optical frequency region, with profound

implications in several research areas, spanning from optical

metrology4 and high precision spectroscopy5,6 to telecommu-

nication technologies1,7.

In two recent papers10,11 the implementation of radiation

comb generators using dc superconducting quantum interfer-

ence devices (SQUIDs) or extended Josephson junctions were

discussed. Assuming realistic experimental parameters, it was

shown that such devices would be able to generate hundreds of

harmonics of the driving frequency. For example, at 200 GHz

a substantial output power of the order of a fraction of nW

could be delivered using a standard 1 GHz frequency drive.

This extraordinary frequency up-conversion opens the way to

many applications from low-temperature microwave electron-

ics to on-chip sub-millimeter wave generation. The devices

discussed in Refs.10,11 were “ideal” in the sense that parasitic

effects which can be present in a real structure were neglected.

In light of a realistic implementation, such effects are unavoid-

able and must be taken into account. In the present work we

investigate extensively the impact of several parasitic effects

on the phenomenology and performance of the SQUID-based

radiation comb generator theoretically proposed in Ref. 10.

Namely, we analyze the case in which the SQUIDs have a

finite loop geometrical inductance and junction capacitance,

and then we estimate the role of adding uncertainty in the

SQUIDs areas and asymmetry parameters when building up a

chain. We treat each one of these effects separately in order to

emphasize their impact both on the physics and on the perfor-

mance of our device. In particular we show that the junction

capacitance plays a negligible role for our choice of parame-

ters, whereas the loop geometrical inductance has a beneficial

effect on the performance of the device. On the other hand,

the errors on the SQUID areas and junction resistance asym-

metries may deteriorate the radiation comb generator perfor-

mance, but their effect remains quite moderate if such errors

e(t) 

IB 

S 

2 

1 

V(t) 

S 

Josephson junction 

RL 

Vtot(t) 

1 2 3 N 

V(t) 

IB 

C 

LJ 

R 

(a) (b) 

(c) 

e e e e IB IB 

FIG. 1. (Color online) (a) Sketch of the single Josephson radiation

comb generator, a SQUID subject to a time-dependent magnetic flux

Φe(t) which induces voltage pulses V (t) across the interferometer.

The red regions denote the two Josephson tunnel junctions, IB is the

constant bias current, ϕi is the superconducting phase across the i-th

junction and S are the superconducting electrodes. (b) RCSJ model

circuit where R, LJ , and C are the resistance, the Josephson induc-

tance and the capacitance of the SQUID, respectively. (c) Sketch of a

linear array of N SQUIDs, connected together via a superconducting

wire, and coupled to a load resistance RL. Each SQUID is pierced by

a uniform magnetic flux Φ. The total voltage Vtot(t) which develops

across the array is given by the sum of all the voltage drops across

each single SQUID.

are within a tolerance of 1% and 0.5% for the areas and the

junction resistance asymmetry parameters, respectively.

The paper is structured as follows: First, we review the de-

vice theoretical analysis in Sec. II. In Sec. III we discuss how

each parasitic effect alter the device performance: The role

of a finite SQUID geometrical inductance and junction capac-
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itance are investigated in Secs. III A and III B, respectively.

Then, in Sec. III C we estimate the impact of an uncertainty

in the SQUIDs areas when adding them in series to build a

linear array, whereas in Sec. III D we consider SQUIDs with

different asymmetry parameters. A discussion about the ex-

perimental feasibility of the proposed system as well as the

estimate of its realistic performance when all the aforemen-

tioned effects are taken into account at once are the content of

Sec. IV. Finally, our conclusions are gathered in Sec. V.

II. THEORETICAL ANALYSIS

In this section we briefly review the physical arguments

leading to the prediction of the π-jumps of the superconduct-

ing phase, and the consequent generation of voltage pulses,

using SQUID devices. Since these were extensively discussed

in Refs. 10 and 11 both for devices based on SQUIDs and on

extended Josephson junctions, we recall here only the basic

principles, without focusing on the details.

A. Single SQUID

We consider a SQUID biased by a constant current IB and

driven by an external, time-dependent magnetic flux Φe(t)
[see Fig. 1(a)]. Due to the first Josephson relation12, the

Josephson current through the SQUID is

IJ = Ic1 sinϕ1 + Ic2 sinϕ2, (1)

where ϕi and Ici (i=1,2) are the phase across and the critical

current of the i-th junction, respectively. In the limit of negli-

gible inductance? , by introducing the superconducting phase

across the SQUID ϕ = (ϕ1 +ϕ2)/2 and using the flux quan-

tization relation9,12 ϕ2 −ϕ1 =−2πΦe(t)/Φ0, the current (IJ)

vs phase relation of the SQUID can be written as

IJ(ϕ;φ) = I+ [cosφ sinϕ + r sinφ cosϕ], (2)

where φ = πΦe/Φ0 (Φ0 = h/2e ≃ 2× 10−15 Wb is the flux

quantum), I+ = Ic1 + Ic2, and r = (Ic1 − Ic2)/(Ic1 + Ic2) ex-

presses the degree of asymmetry of the interferometer. Equa-

tion (2) describes the well-known oscillations of the SQUID

critical current Ic(φ)=maxϕ IJ(ϕ;φ) as a function of the mag-

netic flux12, with minima occurring at integer multiples of

Φ0/2.

For a fixed bias current, when Φe crosses a critical-current

minimum we see from Eq. (2) that a change of sign in cosφ
must be accompanied by a change of sign in sinϕ in order

for the current to maintain its direction. This is accomplished

by a phase jump of π10,11,13,17,18 which, owing to the second

Josephson relation12, results in a voltage pulse V (t) across

the SQUID. The physical origin of the π-jump of the super-

conducting phase can be also easily understood on an ener-

getic ground. For a symmetric (r = 0) SQUID in the absence

of any bias current, the time-dependent Josephson potential

is EJ(t) =
∫

IJV (t)dt =−EJ0 f (t)cosϕ , where f (t) = cos(φ)

and EJ0 = Φ2
0να/(2πR). At the initial time (t = 0) this po-

tential has minima at ϕ = 2kπ (with k integer). When the

magnetic flux reaches the diffraction node at Φe = Φ0/2, EJ

vanishes, and for Φe >Φ0/2 f (t) changes its sign. The former

equilibrium points ϕ = 2kπ have become unstable and hence,

to remain in a minimum energy state, cosϕ must change sign,

meaning that the superconducting phase must undergo a π-

jump to reach a new minimum at ϕ = (2k+1)π . Notice that a

finite bias current IB is then necessary to induce a preferential

direction to the phase jumps.

To determine the details of the voltage pulses, we rely

on the so-called resistively and capacitively shunted Joseph-

son junction (RCSJ) model12,16 adapted to a SQUID [see

Fig. 1(b)], in which each Josephson junction is modelized as

a circuit with a capacitor C, a resistor R, and a non-linear

(Josephson) inductance LJ arranged in a parallel configura-

tion. We consider an external sinusoidally-driven magnetic

flux with frequency ν and amplitude ε , centered in the first

node of the interference pattern, so that

Φe(t) =
Φ0

2
[1− ε cos(2πνt)]. (3)

As a result, the magnetic flux crosses the nodes of the interfer-

ence pattern at tk = (2k+1)/4ν , with k integer. The equation

of motion for ϕ can be written as:

h̄C

2e
ϕ̈ +

h̄

2eR
ϕ̇ + I+ f (ϕ, t) = IB, (4)

where C is the junction capacitance, R is the total shunting

resistance of the SQUID, IB is the external bias current and

f (ϕ, t) = IJ [ϕ;φ(t)]/I+. This equation can be expressed in

terms of the dimensionless time τ = 2πνt. Recalling h̄/(2e)=
Φ0/2π , we obtain10

c
d2ϕ

dτ2
+

dϕ

dτ
−α[ f (ϕ,τ)−δ ] = 0, (5)

where c = 2πRCν , α = I+R/(Φ0ν), and δ = IB/I+ ≪ 1 is the

dimensionless bias current.

The ability to generate a sequence of voltage pulses sug-

gests an application similar to the frequency combs used in

optics1,3. In this context, the most relevant feature becomes

the sharpness of the voltage pulse, which is related to the num-

ber of harmonics generated. The sharpness is essentially de-

termined by the product I+R, which in turn depends on the

material properties of the Josephson junctions10.

B. SQUID array with load resistor

So far the analysis has been focused on the voltage pro-

duced by a single JRCG in the absence of any external load.

A quantity of experimental relevance is the extrinsic power

that can be transferred to a load resistance RL. Although the

total output power provided by a single SQUID is fairly small,

it can be boosted by using a linear array of N SQUIDs, con-

nected together via a superconducting wire [see Fig. 1(c)]. A

similar approach is used for the realization of the metrological
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standard for voltage based on the Josephson effect1,3,4. If we

neglect the coupling among the SQUIDs via mutual induc-

tance and/or cross capacitance and inductance of the super-

conducting wire (see Sec. IV), the dynamics of each SQUID

is independent from the rest of the array10. In this case the

total voltage produced by the chain is given by summing up

the voltages developed across each single SQUIDs:

Vtot(t) =
N

∑
i=1

Vi(t). (6)

Assuming for simplicity that the N SQUIDs are identical, this

can be rewritten as Vtot(t) = NV (t): This is the voltage which

develops across the load resistor RL [see Fig. 1(c)]. As a con-

sequence, a current IL = NV (t)/RL flows across it, having de-

noted RL the (real) impedance of the load. The bias current IB

is thus split into two parts, one entering the SQUID array, the

other (IL) flowing through the load resistor. This is accounted

for by replacing the resistance R “seen” by each SQUID in

Eq. (4) with an effective resistance

Reff =

(

1

R
+

N

RL

)−1

=
RRL

RL +NR
, (7)

and Eq. (8) becomes then

h̄C

2e
ϕ̈ +

h̄

2eReff

ϕ̇ + I+ f (ϕ, t) = IB. (8)

This effective change in the shunt resistance modifies the dy-

namics of each single SQUID. In particular, being Reff < R, it

also reduces the power P = N2V 2/RL that can be delivered

to the load. Since for a single SQUID10 V 2 ∝ Reff, using

Eq. (7) we find that P ∝ N2 for N ≪ RL/R, whereas P ∝ N

for N ≫ RL/R.

We will now turn to the analysis of different parasitic ef-

fects on the performance of this system. Each one of these

effects will be first treated independently, in order to better

emphasize its impact on the physics of the device. After that,

we will try to give a more realistic estimate of the performance

by considering all these effects at once. All the results that fol-

low are for an array of N = 50 SQUIDs made of Nb/AlOx/Nb

Josephson junctions26, under a 1GHz magnetic flux driving

frequency. In particular, we have set the critical voltage of the

junctions Vc = 2 mV, the shunt resistance R = 20 Ohm, the

effective resistance R ≃ 1 Ohm (estimated using Eq. (7) for a

linear array of N = 50 SQUIDs with a load resistance RL=50

Ohm), and the amplitude of the magnetic flux oscillations ε =

0.9.

III. RESULTS

A. Finite SQUID geometrical inductance

In this section we investigate how taking into account a

finite loop geometrical inductance of an individual SQUID

modifies its dynamics under the effect of a time-dependent

magnetic field. Labeling “1” and “2” the two SQUID arms,

and denoting i1(t) and i2(t) the (time-dependent) currents

through each of them, we define the total current I trough the

SQUID and the circulating supercurrent iS as9,12:

I = i1(t) + i2(t),

iS = [i2(t) − i1(t)]/2. (9)

For a symmetric SQUID (r = 0), the currents i1(t) and i2(t)
are related to the voltage drops across the junctions and to the

Josephson supercurrents by

i1(t) = I0 sinϕ1(t)+
V1

R
,

i2(t) = I0 sinϕ2(t)+
V2

R
, (10)

where the time dependence of the superconducting phases is

given by the second Josephson relation dϕk/dt = (2e/h̄)Vk

(k = 1,2), Vk being the electric potential difference across the

k-th junction. Following De Waele8 we neglect the dissipa-

tive contribution to the circulating supercurrent, proportional

to (V2 −V1)/R. This is a reasonable assumption up to driving

frequencies ν of the order of the GHz8, and means that there is

no appreciable contribution to iS originating from the Lenz’s

law of induction. Under this approximation Eqs. (9) reduce to

I = 2I0 sin

(

ϕ1 +ϕ2

2

)

cos

(

ϕ1 −ϕ2

2

)

+ 2
V (t)

R
,

iS = I0 cos

(

ϕ1 +ϕ2

2

)

sin

(

ϕ2 −ϕ1

2

)

, (11)

where V (t) = [V1(t)+V2(t)]/2 is the voltage drop generated

across the SQUID. In writing the flux quantization9,12:

ϕ2 −ϕ1 =−2π
Φ(t)

Φ0
, (12)

now the total magnetic flux piercing the SQUID is Φ(t) =
Φe(t)+LgiS, which differs from the external (time-dependent)

term Φe(t) because of the geometrical inductance of the loop

Lg. Using Eqs. (11) and (12), after some straightforward alge-

bra, we can express the total current through the SQUID and

the total magnetic flux as:

I = 2I0 sinϕ(t)cos

(

πΦ(t)

Φ0

)

+ 2
V (t)

R
, (13a)

Φ(t) = Φe(t) − LgI0 sin

(

πΦ(t)

Φ0

)

cosϕ(t), (13b)

where the phase ϕ(t) = [ϕ1(t) + ϕ2(t)]/2 is related to the

voltage drop across the SQUID via V (t) = (h̄/2e)dϕ(t)/dt.

Equation (13b) offers the following physical interpretation:

At any instant of time t, the finite loop inductance modifies

the external flux Φe(t) piercing the SQUID, and the resulting

total magnetic flux Φ(t) has to be evaluated self-consistently.

Once this is done, the dynamics of the SQUID phase ϕ(t) [as

well as the total voltage drop across the device V (t)] can be

evaluated via Eq. (13a).

In order to quantify this effect, we have solved numerically

the RCSJ-equation (8) for an array of 50 symmetric (r = 0)
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SQUIDs made of Nb/AlOx/Nb junctions26, and computed the

voltage pulses for different values of the loop geometrical in-

ductance, compatible with typical SQUID dimensions.

In Fig. 2 we show the effect of a finite inductance on the

shape of the voltage pulse generated by each SQUID of the

chain. We notice that a geometrical inductance Lg of the or-

der ∼pH is a reasonably good assumption for a SQUID with

radius r of the order ∼ µm if we approximate Lg ≃ µ0r, µ0 be-

ing the vacuum permeability. From the figure we see that the

principal effect of increasing Lg is that the voltage pulses are

delayed with respect to the Lg = 0 case, and furthermore they

are sharper and higher. This is a direct consequence of the

change in the time-dependent magnetic flux profile. Indeed,

starting at t = 0, it turns out that Φ(t) is initially reduced by

virtue of the second term in Eq. (13b). This means that the

condition at which the π-jump of the phase is met (that is,

Φ(t) = Φ0/2) is verified at a later time than tk (see Sec. II),

and the same holds for the voltage pulse. In addition, the fact

that the shape of Φ(t) is altered from the original cosinusoidal

profile induces a faster relaxation of the phase ϕ toward the

energy minimum. As a consequence, the voltage peaks for

finite geometrical inductance are sharper and skewed with re-

spect to the Lg = 0 case (leftmost curve in Fig. 2). This has a

beneficial impact on the emitted radiation spectrum P(Ω) (see

Sec. A), as it is confirmed in Fig. 3, where we show the power

generated by a chain of N = 50 nominally identical and sym-

metric SQUIDs made of Nb/AlOx/Nb junctions, driven by a

1 GHz oscillating magnetic field, for different values of the

loop geometrical inductance Lg. As we can see, the device

with Lg=10 pH is able to provide a power of about 0.1 nW

at 20 GHz (corresponding to the 20-th harmonics of the driv-

ing frequency). Notice finally that only the even harmonics

of the driving frequency are shown in the power spectrum of

the emitted radiation, the contribution of the odd ones being

vanishingly small for symmetric (r = 0) SQUIDs10.

FIG. 2. (Color online) Behavior of a typical voltage pulse generated

by each symmetric Nb/AlOx/Nb SQUID (r = 0) of the array, for

different values of its (geometrical) inductance Lg. The driving fre-

quency is ν=1 GHz, whereas the other parameters are those typical

of a Nb/AlOx/Nb Josephson junction26, given at the end of Sec. II.

FIG. 3. (Color online) Power spectrum of the SQUID-based radiation

comb generator over a 50 Ohm transmission line. Different symbols

correspond to different values of the geometrical inductance Lg. The

calculation is performed for a N = 50 chain of nominally identical

and symmetric Nb/AlOx/Nb SQUIDs, subject to a ν = 1 GHz driv-

ing. The parameters are the same as in Fig. 2. Notice that only the

even harmonics of the driving frequency are shown, the contribution

associated to the odd ones being vanishingly small.

B. Finite SQUID junction capacitance

In this section we investigate the effect of taking into

account a finite SQUIDs junction capacitance. In order

to do this, we have solved the differential RCSJ equation

[Eq. (8)] for the SQUID phase dynamics without neglecting

the second-order (diffusive) term. Details on the numerical

procedure are given in appendix B.

In Fig. 4 we show how the typical voltage pulse generated

by each SQUID of the chain is altered due to the effect of a

finite junction capacitance C. We notice that increasing C up

to 1 pF has the only effect of making the voltage peak slightly

skewed and sharper: This would be beneficial in terms of out-

put power. For larger values of the junctions capacitance,

the second order term in Eq. (8) becomes more important

and the system starts operating in the under-damped regime.

This is evident for C = 2.5 pF (rightmost curve in Fig. 4),

at which the voltage V (t) exhibits small oscillations before

relaxing to zero, taking also negative values. However, all

these effects would be relevant for large Josephson junctions,

whereas in this work we focus rather on small Nb/AlOx/Nb

junctions, typically characterized by a relatively low capaci-

tance (C . 100 fF). In this case, we see from Fig. 4 that there is

no appreciable difference with respect to the zero-capacitance

case (the corresponding curves are essentially indistinguish-

able). As a consequence, our device operates always in the

over-damped regime12,16. According to these results, we do

not expect any relevant modifications in the power spectrum

of the emitted radiation with respect to the ideal (zero capaci-

tance) case, and thus we decided not to show it.
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FIG. 4. (Color online) Behavior of a typical voltage pulse generated

by each symmetric Nb/AlOx/Nb SQUID (r = 0) of the array, for

different values of the junction capacitance C. The driving frequency

is ν=1 GHz, whereas the SQUIDs parameters are the same as in the

previous figures.

C. Uncertainty on the SQUIDs areas

When fabricating an array of N SQUIDs, it is most unlikely

to be able to make them all identical. Inevitable imprecisions

in the lithographic processes imply that the SQUIDs will have

slightly different areas. As a consequence, if the array is em-

bedded in a coil which generates an ideally uniform magnetic

field, the resulting flux Φe piercing each SQUID of the array

will be different: Larger SQUIDs will be pierced by a larger

magnetic flux, and vice-versa. This will induce a shift in the

time at which the condition Φe = Φ0/2 (when the supercon-

ducting phase experiences a π-jump) is met: The phase will

jump earlier in larger SQUIDs.

To better quantify this effect, let us associate a gaussian

statistical distribution for the SQUID areas:

A = A0 (1+ζA) with P(ζA) =
1√

2πσA

exp

(

− ζ 2
A

2σ2
A

)

,

(14)

where ζA is a dimensionless parameter quantifying the de-

gree of uncertainty on the SQUIDs areas, being normally dis-

tributed around zero with variance σ2
A , whereas A0 is the refer-

ence value for the surface delimited by the SQUID loop. The

standard deviation σA can thus be seen as the percentage error

within which the value of the area is known. We can write the

external magnetic flux as:

Φe(t) = B(t)A = (B0 −B1 cos(2πνt))A0(1+ζA) =

= B0A0

(

1− B1

B0
cos(2πνt)

)

(1+ζA) =

=
Φ0

2
(1+ζA) [1− ε cos(2πνt)] , (15)

where we defined B0A0 ≡ Φ0/2 and ε ≡ B1/B0. The phase

jump occurs at Φe(t) = Φ0/2, that is, at a switch time t̄ deter-

mined by:

ζA − ε(1+ζA)cos(2πν t̄) = 0,

→ t̄ =
1

2πν
arccos

(

1

ε

ζA

1+ζA

)

+ kπ, (16)

where k is a non-negative integer. For sufficiently small ζA,

the above expression for t̄ simplifies to:

t̄ ≈ 1

4ν
(1+2k)− ζA

2πνε
≡ tk −

ζA

2πνε
, (17)

where, as in Sec. II, we have defined tk = (1+2k)/4ν . From

this expression it is evident that larger SQUIDs (ζA > 0)

switch before (t̄ < tk), and vice-versa. Notice also that, since

the relation between ζA and t̄ is linear, we can understand this

result in terms of the distribution of the switch-times P(t̄),
which can be easily computed:

P(t̄) =
1√

2πλA

exp

(

− (t̄ − tk)
2

2λ 2
A

)

, (18)

with λA = σA/2πεν . This can be interpreted by stating that

the times t̄ at which the phase of the SQUIDs undergo a π-

jump is normally distributed around tk with a variance λA

which is directly proportional to the uncertainty σA on the

SQUIDs areas.

In Fig. 5 we show how a typical voltage pulse generated

by a linear array of N = 50 symmetric SQUIDs is altered by

assuming different uncertainties σA on the areas, up to five

percent. By “typical” we mean that we have first computed

Vtot(t) for a single array of SQUIDs with random areas [ac-

cording to Eq. (14)], and then we have iterated this procedure

for many realizations of the array. We have finally calculated

the average voltage pattern, and defined it as the typical one

(see appendix C). We notice that the main effect is that the

FIG. 5. (Color online) Behavior of a typical sequence of two

voltage pulses generated by an array of N = 50 SQUIDs made of

Nb/AlOx/Nb junctions with areas statistically distributed according

to Eq. (14) for different values of the standard deviation σA. The

driving frequency is ν=1 GHz, whereas the SQUIDs parameters are

the same as in the previous figures.
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voltage peaks are broadened and lowered, due to the fact that

a certain number of SQUIDs switch before and after tk, the

reference switch time for a SQUID of area A0 [see Eq. (17)].

As a consequence, the power spectrum of the emitted radia-

tion is lowered, exhibiting an exponential cut-off at high fre-

quency. Despite this, we notice in Fig. 6 that this reduction

is still very moderate for an uncertainty σA = 0.01, in which

case the power is reduced by less than one order of magnitude

around 100 GHz (corresponding to the 100-th harmonics of

the driving frequency), whereas it is basically unchanged at

20 GHz. By increasing the error to σA = 0.05, on the other

hand, hte power P is reduced in a substantial way. We fi-

nally note that, in contrast to Fig. 3, in the power spectra for

σA ≥ 0.01 the non-dominant (odd) harmonics are visible (bot-

tom curves). Remarkably, they show complex structure when

increasing σA. This is evident for σA = 0.05: In this case, for

Ω & 40 GHz, the power associated to odd harmonics becomes

of the same order, if not larger, than that associated to the odd

ones.

FIG. 6. (Color online) Average power spectrum of the SQUID-based

radiation comb generator over a 50 Ohm transmission line, for differ-

ent values of the standard deviation σA of the areas distributions. The

calculation is performed for a N = 50 chain of Nb/AlOx/Nb SQUIDs

subject to a ν=1 GHz driving.

D. Uncertainty on the SQUIDs asymmetry parameters

Another possible source of non-ideality in the fabrication

of an array of SQUIDs stems from the asymmetry between

the two Josephson junctions composing each element of the

array. This is quantified in terms of the asymmetry parameter

r = (Ic,1 − Ic,2)/(Ic,1 + Ic,2), as explained in Sec. II. We no-

tice that assuming a statistical symmetric distribution for the

parameter r around 0 (corresponding to an ideally symmet-

ric SQUID) would be much detrimental for the device per-

formance, because SQUIDs with Ic,2 > Ic,1 generate opposite

voltage pulses with respect to SQUIDs with Ic,2 < Ic,1, for

small bias current10. Thus, when summing up all the pulses

to compute the total voltage, the contributions associated to

r > 0 would basically compensate those associated to r < 0,

resulting in a poor performance in terms of output power.

To overcome this problem, we assume that the SQUIDs are

fabricated with a small preferential asymmetry r0, for instance

Ic,2 < Ic,1, which correspond to r0 > 0. Following the same

approach as in the previous section, we introduce a gaussian

statistical distribution for the parameter r:

r = r0 (1+ζr) with P(ζr) =
1√

2πσr

exp

(

− ζ 2
r

2σ2
r

)

,

(19)

where ζr is a dimensionless parameter which quantifies the

uncertainty on the SQUIDs asymmetry, being normally dis-

tributed around zero with variance σ2
r , whereas r0 = 0.01 is

the chosen reference value for the SQUIDs asymmetry. We

have solved numerically the RCSJ dynamics of the linear ar-

ray of SQUIDs following the same procedure outlined in the

previous section. In Fig. 7 we show how the typical? voltage

pulses generated by an array of N = 50 SQUIDs are altered by

assuming different uncertainties σr on the parameter r, up to a

standard deviation of one percent. Notice that the main qual-

itative difference with respect to the previous cases, in which

symmetric SQUIDs were considered, is that here the sequence

of voltage pulses exhibits alternating signs. This feature was

observed and explained in Ref. 10: Its major consequence is

that in the power spectrum the odd harmonics are predominant

over the even ones.

Figure 8 shows the average power spectrum of the emit-

ted radiation for an array of N = 50 SQUIDs. We notice that

increasing the uncertainty σr on the asymmetry parameter re-

duces the power, especially at high frequency. Similarly to

what we observed in Fig. 6 in the previous section, the non-

dominant harmonics (in this case the even ones) show com-

plex structure when increasing σr. For σr = 0.01, at high fre-

quency (Ω & 60 GHz), the power associated to even harmon-

ics becomes comparable or even larger than that associated to

the odd ones.

IV. EXPERIMENTAL FEASIBILITY

In this final section we discuss the experimental feasibility

of the setup, and we estimate its realistic performance when

all the parasitic effects studied so far are taken into account at

once. Some of the effects we are going to discuss were studied

in Ref. 10, so here we just review them briefly.

First of all, in our analysis so far we have neglected the cou-

pling between the SQUIDs via mutual inductance and/or cross

capacitance and inductance of the superconducting wire. This

condition, which basically relies only on the current conser-

vation through each SQUID in the chain11, implies that the

dynamics of each SQUID is independent from the rest of the

array, and it can be realized in practice by a suitable design

choice. As a consequence, the voltage at the extremes of the

array scales as the number N of SQUIDs. Accordingly, the

intrinsic power generated by the device (that is, the power

delivered to an ideally infinite load) scales as N2. On the

other hand, the extrinsic power depends on the detection sys-

tem used. In our case the JRCG array is supposed to be at-

tached to a finite load, which effectively couples the dynam-
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ics of the SQUIDs: For realistic devices the extrinsic power is

then found to scale as N, rather than N2 (see related discus-

sion in Sec. II). As shown in Sec. III, this N scaling is not a

limitation in the region of tens of GHz, where sizable output

power can be generated. Conversely at higher frequency, e.g.

sub-millimeter region, the output power drops and the device

design must be modified to compensate for this decrease. One

possibility is to operate with more JRCG arrays arranged in a

parallel configuration: In this case the contribution P of each

JRCG array would add up and the total power would be given

by Ptot = NparP, where Npar is the number of SQUID arrays in

parallel.

Another important issue concerns the way the emitted radi-

ation propagates across the device. When discussing the scal-

ing of the power with the number N of SQUIDs in the chain,

we have implicitly assumed such radiation to propagate in-

stantly across the device. This lumped-element model is justi-

fied in our case, since we consider relatively short arrays and

frequencies below 100 GHz10.

In Fig. 9 we show the estimated power spectrum gener-

ated by a single realistic array of N = 50 SQUIDs made of

Nb/AlOx/Nb Josephson junctions. By “realistic” we mean

subject to the fabrication errors discussed in Secs. III C and

III D, having random (normally distributed) areas and asym-

metry parameters. Furthermore, we assume them to have a fi-

nite loop geometrical inductance Lg ≃ 10 pH (see Sec. III A).

On the other hand, we do not consider any corrections due to

their finite junction capacitance since we showed in Sec. III B

that they were completely negligible. From the figure, we no-

tice that this device is still able to provide an output power of

about 0.1 nW around 20 GHz (corresponding to the 20-th har-

monics of the driving frequency, see the corresponding black

arrow). If we compare this to the results of Fig. 3, we notice

that the power in this frequency range is only slightly reduced,

FIG. 7. (Color online) Behavior of a sequence of two typical volt-

age pulses generated by an array of N = 50 SQUIDs made of

Nb/AlOx/Nb junctions. The SQUID chain is characterized by an

asymmetry parameter r distribution which is gaussian and centered

around r0 = 0.01 with a standard deviation σr [see Eq. (19)]. The

driving frequency is ν=1 GHz, whereas the other SQUIDs parame-

ters are the same as in the previous figures.

FIG. 8. (Color online) Power spectrum of the SQUID-Josephson ra-

diation comb generator over a 50 Ohm transmission line, for different

values of the standard deviation σr of the asymmetry parameter dis-

tributions (centered around r0 = 0.01). The calculation is performed

for a N = 50 chain of Nb/AlOx/Nb SQUIDs subject to a ν=1 GHz

driving.

as a consequence of the errors on the areas and the asym-

metry parameters. A larger deterioration of the performance

- of about two orders of magnitude - is otherwise expected

at higher frequency (around 100 GHz, see the corresponding

black arrow). Nevertheless, the device is still able to produce

an output power between 0.1 and 1 pW in this range, which

can be relevant for several applications. All these considera-

tions enforce the message that if the SQUIDs of the array can

be fabricated with an accuracy of the order of 1% on the areas

and of 0.5% on the asymmetry between the junctions, the ex-

pected performance is not altered significantly with respect to

the ideal situation for frequencies around 20 GHz.

Finally, we stress that all our analysis has been carried out

at zero temperature, being more focused on the fabrication

parasitic effects. The effects of thermal noise were indeed al-

ready addressed in Ref. 10 for a similar setup made of YBCO

Josephson junctions. In that case it was shown that its contri-

bution was basically negligible, the signal to noise ratio being

of the order of 103 at a temperature of 4.2 K. Hence, we do

not expect a finite temperature to alter significantly the results

presented in this paper.

V. CONCLUSIONS

In summary, we have discussed extensively several para-

sitic effects on the working operation of the SQUID-based ra-

diation comb generator originally proposed in Ref. 10. Under

certain conditions, we found that taking into account the finite

loop geometrical inductance of the SQUIDs has a beneficial

impact on the device performance, whereas the fabrication er-

rors (uncertainties in the SQUIDs areas and asymmetries) tend

to decrease it. Also, in the range of parameters considered,

we showed that a finite junction capacitance does not alter the

results, meaning that the device operates always in the over-

damped regime.
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When all these effects are taken into account at once, we have

estimated that a realistic array of N = 50 SQUIDs made of

Nb/AlOx/Nb junctions is able to deliver a power of ∼ 0.1 nW

around 20 GHz, and of ∼ 0.1− 1 pW around 100 GHz, to a

standard load resistance of 50 Ohm. This may opens interest-

ing perspectives in the realm of quantum information technol-

ogy.

The device has room for optimization by modeling the geom-

etry of the single junctions, the fabrication materials, the driv-

ing signal and the array design. For instance, besides SQUIDs

made of tunneling junction considered in this work, one may

investigate devices made of weak-link SNS junctions, such as

Nb/HfTi/Nb Josephson junctions29,30.

Finally, the discussed implementation would have the advan-

tage to be built on-chip and integrated in low-temperature su-

perconducting microwave electronics31–33.
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FIG. 9. (Color online) Power spectrum of a single realistic sample

of a SQUID-based radiation comb generator over a 50 Ohm trans-

mission line. We have assumed a geometrical inductance Lg=10

pH, and standard deviations σA=0.01 and σr=0.005 on the areas and

the asymmetry parameter, respectively (the latter centered around

r0 = 0.01). The calculation is performed for a N = 50 chain of

Nb/AlOx/Nb SQUIDs subject to a ν=1 GHz driving. Blue and red

symbols represent the odd and even harmonics, respectively, whereas

the black arrows emphasize the frequency ranges around 20 GHz and

100 GHz.

Appendix A: Voltage spectrum and power

To test the performance of this radiation generator, we have

calculated the power spectrum P vs frequency Ω. To this goal,

first we have computed the Fourier transform of the voltage

V (Ω) =
∫ T

0
dt eiΩtV (t). (A1)

The power spectral density (PSD) is then PSD(Ω) =
1/T |V (Ω)|2. Finally, the power P is calculated by integrating

the PSD around the resonances kν (where ν is the monochro-

matic driving frequency) and dividing for a standard load re-

sistance of 50 Ohm. This is the power we would measure at

a given resonance frequency with a bandwidth exceeding the

linewidth of the resonance.

Appendix B: Solution of the second-order RCSJ equation

To study the dynamics of the SQUID phase ϕ in Sec. III B,

we have used a downwind finite difference approach to dis-

cretize the derivatives in Eq. (8), and the resulting equation

implemented numerically is (in the dimensionless time nota-

tion):

c
ϕ(i+1)−2ϕ(i)+ϕ(i−1)

dτ2
+

ϕ(i)−ϕ(i−1)

dτ
+

+α
[

cosφ (i) sinϕ(i)+ r sinφ (i) cosϕ(i)−δ
]

= 0, (B1)

where ϕ(i) is the phase at time τi, φ (i) ≡ πΦ(τi)/Φ0 is the

reduced flux, r is the asymmetry parameter of the SQUID,

c = 2πν ReffC is the reduced junction capacitance, α =
I+Reff/(Φ0ν) and δ = IB/I+ is the dimensionless bias current.

Appendix C: Statistical approach

In order to estimate the effects of imperfections in the

SQUIDs fabrication, we have followed a statistical approach.

We describe here the procedure adopted in Sec. III C, the one

in Sec. III D being equivalent.

Given a certain value of the standard deviation σA, we have

sampled an interval of width 8σA by introducing a number of

bins Nbins. We have then solved the RCJS dynamics (8) for

Nbins values of ζA,i [corresponding to Nbins values of areas Ai,

according to Eq. (14)] taken as the centers of each bin. The

computed voltage versus time Vi(t) has been stored aside.

At this stage, to simulate the dynamics of an array, we have

generated N=50 values of ζA taken from a random Gaussian

probability distribution with zero mean and standard deviation

σA, and to each one of these we have associated the voltage

Vi(t) corresponding to the closest value of ζA,i, calculated and

stored previously.

For an array of N SQUIDs, under the hypothesis of inde-

pendent SQUID dynamics (see Sec. IV) the total voltage is
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simply the sum of all the voltages generated by each SQUID:

Vtot(t) =
N

∑
i=1

Vi(t). (C1)

Indeed the presence of the load, and the fact that it effectively

couples the dynamics of the SQUIDs, has been taken into ac-

count by substituting the shunt resistance R with Reff in the

RCSJ equation, as discussed in Secs. II.

Finally, this procedure has been iterated for a relatively

large (Nreal=10000) number of realizations of different arrays,

and the typical voltage of an array has been defined as:

Vtyp(t) =
1

Nreal
∑

j

V ( j)(t), (C2)

where the index j = 1 . . .Nreal labels the j-th realization of an

array. We have done this, instead of simulating the dynamics

of all the SQUIDs of each array many times, in order to reduce

the computational burden, otherwise enormous.
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