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We demonstrate the possible existence of a new class of

superconducting Josephson junctions (JJs) namedfield-induced

Josephson junctions (FIJJs). One representative is a junction

made by placing a ferromagnetic strip on the top of a

superconducting strip, which we study in this work. We obtain

a possible transition between one regime of an FIJJ, which is the

quasi-tunneling weak link Josephson junction (similar in

certain aspects to an S–F–S Josephson junction, but with

different boundary conditions), and the second regime of an

FIJJ, which is the weak link constriction (two superconductors

connected by a narrow superconducting link) as a function of

the thickness of the superconducting strip, magnitude of

magnetization, and temperature. We use the generalized

Ginzburg–Landau (GL) equations derived from the extended

Hubbard model in order to determine some properties of the

new class of Josephson junction. In this paper, we perform the

computation for a first type of superconductor, although both

types of superconductor can be used to create an FIJJ. Further

directions of studies of the indicated class of Josephson junction

are also described.
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1 Motivation Currently, large-scale complementary

metal–oxide–semiconductor (CMOS) integrated circuits are

used on a massive scale for electromagnetic (EM) signal

processing with GHz frequencies. Most electronics is

implemented with this technology. However, there are serious

limitations in increasing the speed of semiconductor circuit

operation with the growth of the semiconductor circuit

integration scale. The main obstacle is the power dissipation

in such circuits. One way to achieve the increase in both

parameters of integrated circuits is the use of high-integration

superconducting circuits, which can operate almost without

dissipation with very high frequencies as in the THz range.

Such superconducting circuits should be based on Josephson

junctions, which can operate in the THz range and which can

bemanufactured in a relatively easyway.Another requirement

for low operation cost and massive use is the need for

Josephson junction circuit operation at higher temperatures.

This can be satisfied by usage of high-temperature supercon-

ductors that can superconduct at the temperature of liquid

nitrogen. Additional motivation for the studies of Josephson

junctions (first described as tunneling junctions by Josephson

[1] and later developed also as weak links by many physicists,

e.g., by Likharev [2]) is a possible implementation of qubits in

high-temperature superconductors that can be easily imple-

mented on amassive scale. A very promising superconducting

candidate for high-temperature applications in THz circuit

design and possible high temperature superconducting qubit

implementation is the field-induced Josephson junction (FIJJ),

made by placing a ferromagnetic strip on the top of an s- or

d-wave superconducting strip (or possibly any other super-

conductor type). In order to understand the physics of FIJJs

and their architectures, we use the relaxation method to solve

equations obtained by the extended Ginzburg–Landau (GL)

formalism and within the Bogoliubov–de Gennes (BdGe)

formalism. Solutions of GL and BdGe equations for the case

of FIJJs give the basis for the determination of transport

properties of a new class of Josephson junctions that is

described in the next sections.

2 Definition of field-induced Josephson
junction We consider a class of the FIJJ in the first type

of superconductor. One of the firstworks in this directionwas
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started by Clinton [3]. Such a Josephson junction was made

by placing a non-superconducting element, e.g., a ferro-

magnet (MFIJJ – magnetic FIJJ) or a multiferroic one on

the top of a superconducting strip (EFIJJ – electric FIJJ or

MEFIJJ – magneto-electric FIJJ), as described in Fig. 1 with

its circuit representation. In all types of FIJJ a modulation

of the superconducting order parameter is achieved in the

superconductor due to the presence of the non-super-

conducting strip on the top of the superconductor, which

leads to the creation of two or more superconducting

reservoirs. Partial reservoir overlap and the Cooper pair

tunneling between them (as pointed out in Refs. [1] and [2])

leads to the Josephson effect. Some experiments with

such a class of Josephson junctions were conducted in

Refs. [4, 5] and [6] with a MFIJJ [11]. The modulation of

the superconducting order parameter (SCOP) is due to the

existence of the magnetic, electric, or combined electric

and magnetic field coming from the non-superconducting

element. It is also due to the diffusion of Cooper pairs from

the superconductor to the non-superconducting element

and due to diffusion of unpaired electrons from the non-

superconducting element to the superconductor, as described

in Ref. [7]. Those effects are accounted for by the GL or

BdGe formalism and are the subject of the computations

conducted in this work. Since modulation of the order

parameter is due to the existence of an electric or magnetic

field, we call such a Josephson junction an EFIJJ, an MFIJJ,

or an electric (magnetic) FIJJ. In general, we refer to such a

class of Josephson junction as the FIJJ. If we replace the

ferromagnetic element of an FIJJ by non-ferromagnetic and

non-superconducting elements, we obtain a system that can

show a different Josephson junction behavior.We call such a

structure an unconventional Josephson junction (uJJ). It is

also interesting to find an analogy between the FIJJ and the

field-effect transistor (FET). In both cases the electric (or

magnetic) field can be used to make a transistor where the

flow of an external electric current via the device is induced

by the presence of the electric field. In the case of an FET, the

presence of the electric field is due to the voltage applied to

the gate, which is placed between drain and source. If we

use a multiferroic material on the top of the superconductor

and apply a certain voltage between ‘‘source’’ and ‘‘drain’’,

we induce a certain magnetic field. Thus, we obtain the

modulation of the superconducting order parameter by

means of the electric andmagnetic field. The influence of the

electric field on tuning properties of the superconductor is

described in Ref. [10].

In this work we show the behavior regimes of the MFIJJ

and its circuit representation as depicted in Fig. 1.We expect

that the junction(s) circuit parameters C, L, R (capacitance,

inductance, resistance) can be tuned by the magnetizationM

of the ferromagnetic bar, the external magnetic field B, and

the electric current I flowing via the system.

3 Mathematical description of FIJJ There are

various formalisms describing superconductors, from

phenomenological and simple to fundamental and complex

ones such as: two-fluid model, GL, BdGe [20], Usadel [15],

Eilenberger [16], Gorkov and Keldysh formalisms. The

complexity in solving equations in the given formalisms

increases as we move from the most phenomenological

toward a more microscopic picture. The good example is a

comparison of Ginzburg-Landau and Gorkov formalism as

given by [17]. In this work we describe only the MFIJJ

system. The superconductor–ferromagnet system was stu-

died by many groups with use of various formalisms, as is

indicated in Ref. [23]. To begin, we use the GL formalism,

which gives the information about the SCOP distribution for

2 K. Pomorski and P. Prokopow: Field-induced Josephson junctions
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Figure 1 (online color at: www.pss-b.com) Behavior regimes of MFIJJ and its circuit representation.
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temperatures close to the critical temperature Tc. We will

consider only occurrence of the first kind of superconductor,

which transits to the normal state under the influence of

a magnetic field. GL theory of an s-wave superconductor

with a ferromagnetic strip on the top gives the free energy

functional F that is the sum of the following terms:

superconductor term Fs, ferromagnetic bar term FM and

term describing superconductor–ferromagnet interaction

Fs–M. Thus, we obtain F ¼ Fs þ FM þ Fs�M , where

FM ¼

Z

d3r aðTÞjMj2 þ
bðTÞ

2
jMj4 þ CjrMj2

� �

; (1)

Fs ¼

Z

d3r
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;

(2)

Fs;M ¼

Z

d3r

 

gjcj2jMj2 þ ejrMj2jcj2

þ
m

2m
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i
r�

2e

c
A
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c
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jMj2 þ curlðAÞM

!

:

(3)

By c we denote the complex scalar field describing

the SCOP while the vector fields A and M describe the

vector potential and the magnetization. In the case of

the superconductor–ferromagnet system, by minimizing the

functional F ¼ Fs þ FM þ Fs;M and applying dF=dc ¼ 0

we obtain

aþ gjMj2
� �

cþ bjcj2c�
�h2

2m
1þ mjMj2
� �

r2c ¼ 0;

and by dF=dA ¼ 0we get the equation for the electric current

density

j ¼
e

�him
1þ mjMj2
� �

cyrc� crcy
� �

�
e2A

2mc
1þ mjMj2
� �

c:

The boundary condition between the s-wave supercon-

ductor and normal metal is given as

nPcðxÞ ¼ n
�h

i
r�

2e

c
AðxÞ

� �

cðxÞ ¼
1

b
cðxÞ;

where n is the unit vector perpendicular to the super-

conductor–other medium (as normal metal) interface,

b is the constant depending on the material as

b ¼ ðNsDs=NnDnÞj, where Ns and Nn are the densities of

states at the Fermi level in a superconductor and in a normal

metal at the Fermi level, j is the superconducting coherence

length, and Ds and Df are diffusion constants correlated to

the Fermi velocity and relaxation time. The constant b can

be expressed by means of the Usadel formalism [9, 11].

A quite similarmathematical structure can be assigned to

the description of an EFIJJ. In such a case the GL equations

have to describe a multiferroic–superconductor system. The

boundary conditions for this case are given in Ref. [11]. We

obtain the following equations:

FE ¼

Z

d3r a1ðTÞjPj
2 þ

b1ðTÞ

2
jPj4 þ C1jrPj2

� �

; (4)

Fs ¼

Z

d3r

 

ajcj2 þ bjcj4

þ
1

2m

�h

i
r�

2e

c
A

� �

c

�

�

�

�

�

�

�

�

2

þ
ðcurlAÞ2

4p

!

;

(5)

Fs;P ¼

Z

d3r

 

g1jcj
2jPj2 þ

m

2m

�h

i
r�

2e

c
A

� �

c

�

�

�

�

�

�

�

�

2

� jPj2 þ e1jrPj2jcj2
!

;

(6)

where F ¼ Fs þ FE þ Fs;E. Therefore, the three-dimen-

sional magnetization field M ¼ ðMx;My;MzÞ is replaced

with the three-dimensional electric polarization field

P ¼ ðPx;Py;PzÞ. Having the order parameter distributions

from the solution of GL equations as in the case of a non-

superconducting and non-ferromagnetic element on the top

of a superconductor, we place them into the BdGe equations

and obtain eigenvalues and eigenfunctions, which deter-

mine the local density of states (LDOS) given by the

formula

N r;Eð Þ ¼ �
X

n

f 0ðen � EÞjunðrÞj
2 þ f 0ðen þ EÞjvnðrÞj

2
� �

(7)

(see Ref. [20]), where f is the Fermi–Dirac distribution

function (un, vn) and en are eigenfunctions and eigenvalues

of the BdGe equation and the summation is performed over

the energies below the Debye frequency. Initially, the GL

equation was solved for the case of zero magnetic field for

the two-dimensional case. Once the SCOP is determined

from the GL equation, we substitute it into the BdGe

equations. In such a way the LDOS was obtained inside the

superconductor for the structure with a non-superconductor

placed on the top of a superconductor, as indicated in Fig. 2,

and when the vector potential and magnetization are set

to zero.

4 Computation method There are various methods

which can be used to solve the GL equations such as

the finite-difference method, spectral methods, annealing
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methods, and many others. Because of simplicity and

numerical stability even for the case of a complex set of

nonlinear equations, the relaxation method is used. Deriving

the GL equations we look for the case of the functional

derivative of the free energy functional F set to zero with

respect to the physical fields uponwhich it depends. Then we

obtain the following class of equations:

d

dXi

F c;A;M;E½ � ¼ 0; Xi ¼ c;A;M;Eð Þ; (8)

where E is the electric field.

To approach the solutions given as the configuration of

the (c, M, A, E) fields we need to make the initial guess of

physical fields configuration and of the SCOP in the given

space, using physical intuition. The initial guess should be

not too far from the solution. Having the initial guess, we

perform the calculation of the fields change on the given

lattice, with each iteration virtual time step dt according to

the scheme

d

dXi

F c;A;M;E½ � ¼ �hi
dXi

dt
; Xi ¼ c;A;M;Eð Þ: (9)

Here, h1, h2, h3, h4 are phenomenological constants. The dt

term cannot assume too big a value since it might bring a

numerical instability in the simulation. One of the signatures

of approaching the solution is the minimization of the free

energy functional. In this case one can observe a characteristic

plateau in the free energy as a function of iteration (virtual

time). It should be emphasized that the relaxation method

applied here is in the framework of the GL formalism and it

can also be conducted with the use of the Greens function

technique in the Usadel or Eilenberger form.

5 Computation results The first computations we

conducted for the case of a non-superconducting strip being

placed on the top of a superconducting strip in two and

three dimensions with no magnetization or vector potential

present in the system. Because of the presence of the non-

superconducting strip, there occurs a diffusion of Cooper

pairs from the superconductor to the normal strip, as well

as a diffusion of unpaired electrons from the non-

superconducting strip into the superconductor, which is

effectively visible as a lowering of the SCOP inside the

superconducting strip.

Depending on the thickness of the superconducting strip

we have identified two different regimes of the GL solution.

The first regime is obtainedwhen the superconducting strip is

thick in comparison with the non-superconducting strip.

Then, lowering of the SCOP inside the superconductor does

not lead to the separation of the superconducting region into

two regions, as indicated by the middle plot of Fig. 2a.

The second regime occurs when the superconducting

strip is very thin, which is indicated in the right picture of

Fig. 2a. The lowering of concentration of Cooper pairs in the

middle of the superconducting strip brings an effective

separation of the superconducting reservoir into two parts.

In such a case we expect the occurrence of the Josephson

effect in this structure by the interaction of two overlapping

superconducting reservoirs.

We can intuitively state that weak separation of Cooper

pair reservoirs by a geometrical factor tunes the Josephson

effect occurring in the structure. The geometrical configur-

ation of the studied structure is depicted by the left picture

of Fig. 2a.

In the performed computations the used dimensions of

the structure are ðLx; Ly; LzÞ ¼ ð0:6; 20; 20Þ and (0.2, 20, 20)
in the superconducting coherence length units.

Another possibility is the separation of the super-

conducting reservoir into two or more reservoirs by means

of a magnetic field, which gives the basis for the possible

existence of the induced Josephson effect in such systems.

By changing themagnetization strength of the ferromagnetic

bar (as e.g., Fe) we can tune the Josephson junction

properties from the constriction weak link to the quasi-

tunnelingweak link regime. The distribution ofmagnitude of

the SCOP and of the magnetization inside the supercon-

ductor for various magnetizations of the Fe bar is depicted

4 K. Pomorski and P. Prokopow: Field-induced Josephson junctions
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Figure 2 (online color at: www.pss-b.com) SCOP distribution and the LDOS in s-wave uJJ with no magnetic field. (a) Geometry and

s-wave SCOP distribution cðx; yÞ for a normal strip on the top of a superconducting strip with no magnetic field (case of uJJ). Decrease

in thickness of the superconducting strip (from left to right) has its impact on the separation of Cooper pair reservoir into two reservoirs.

(b)LDOSfor two-dimensional s-waveuJJ Josephson junction (FIJJ architecturewithnomagneticfield) fordifferent temperaturesT1 andT2,

where T1< T2.
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in Figs. 3 and 4 by the numerical solution of Eqs. (1), (2),

and (3), with use of the relaxation method. In Fig. 3

the two-dimensional superconducting order parameter

distribution cðx; yÞ in a magnetic field FIJJ for two different

magnetizations of the ferromagnetic bar is depicted.

The dimensional lattice of size 70� 70 was used for

the computations. The geometrical configuration of the

superconductor–ferromagnet system is denoted as A1

(ferromagnetic strip under superconductor strip) and is

depicted in Fig. 3e (left). The size of the studied structure in

terms of superconducting coherence length units is given by

two parameters ðLx; LyÞ ¼ ð1:4; 42:2Þ. The transition from

the quasi-tunneling weak link Josephson junction to the

weak link Josephson junction constriction can be observed.

The quasi-tunneling weak link is named after the structure

that has the continuous superconductor material, but the

magnetic field lowers locally the SCOP and it introduces

locally a non-zero magnetization in the area where the

superconductivity order is destroyed. In such a case the

system has similarity to the case of the tunneling S–F–S

Josephson junction. In both FIJJ regimes the magnetization

is increased locally and the SCOP is destroyed locally.

There is however a key difference. In S–F–S material there

is the interface discontinuity and usually the boundary

condition

nPcðxÞ ¼ n
�h

i
r�

2e

c
AðxÞ

� �

cðxÞ ¼
1

b
cðxÞ

takes place. Such a situation does not occur in an FIJJ quasi-

tunneling weak link in the direction of the current flow. If

the magnetization of the FIJJ is weak, then there is no strong

penetration of the magnetic field inside the superconductor

area. Nevertheless, the lowering of the SCOP is visible, so

the system is similar to the weak link constriction. In the

conducted simulations the magnetization of the Fe strip

was assumed to be constant inside Fe. By the continuous

change of the magnetic strip magnetization, the continuous

change of the SCOP strength and of the magnetization

inside the superconductor has been achieved. Thus, we

claim to observe the transition between the quasi-tunneling

weak link FIJJ and the FIJJ weak link constriction. The

same simulation was repeated for the case of more than one

FIJJ.

In Fig. 4 the distribution of the s-wave SCOP jcðx; yÞj
and themagnetizationMðx; yÞj inside the superconductor for
a two asymmetric FIJJ array with magnetized Fe elements in

the direction perpendicular to the S–F interface is depicted.

Phys. Status Solidi B (2012) 5
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Figure 3 (online color at:www.pss-b.com)Characterization of s-waveFIJJ Josephson junction(s) tuningproperties. (a) Two-dimensional

SCOP distribution jcðx; yÞj in magnetic field FIJJ for different magnetizations of the ferromagnetic bar (A1 configuration). The

transition from the quasi-tunneling weak link Josephson junction to the weak link constriction can be observed. (b) Two-dimensional

SCOP distribution jcðx; yÞj in two-MFIJJ array (A2 configuration). (c) Two-dimensionalmagnetization distribution inside superconductor

jMðx; yÞj in FIJJ for different magnetizations of the ferromagnetic bar (A1). The higher the magnetization, the more effective the

division of the SCOP reservoir is observed (as we move from left to right). Therefore, the transition from the constriction weak link

to the quasi-tunneling weak link Josephson junction occurs. (d) Two-dimensional magnetization distribution jMj inside superconductor of

two-MFIJJ asymmetric array (A2), where jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
x þM2

y

q

. (e) Different geometries of FIJJ(s) (A1 and A2 configurations).
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The structure is in the configuration A2 (2FIJJs on the

same side of the superconductor, as given on the right-hand

side of Fig. 3e) with dimensions ðLx; LyÞ ¼ ð0:7; 21Þ in the

superconducting coherence length units. In all conducted

computations the demagnetization effects were taken into

account bymeans of theGL formalism and they do not affect

significantly the obtained distribution of the SCOP close

to the F strip.

It is possible to determine the SCOP distribution in an

EFIJJ in a similar way as in the case of an MFIJJ, when a

multiferroic element is used instead of the ferromagnet.

This is because the mathematical structure of the system

free energy functional is quite analogous to the GL free

energy used for the MFIJJ case, as indicated in Eqs. (1)–(3)

and (4)–(6). In such a case, it seems to be very desirable to

extend the GL formalism further to account for the existence

of non-zero magnetization and non-zero electric field.

In the future we plan to solve the extended GL equations

for the case of d-wave superconductors and to account for

the coexistence of singlet and triplet phases. The presence of

s-wave or d-wave SCOP components will be possible in

the extended GL framework, which is equivalent to the

coexistence of five coupled complex scalar fields (px, py,

pz, s, d) in three-dimensional or two-dimensional cases. The

detailed coefficients of the GL functional can be obtained

from the paper by Kuboki [13]. It is also interesting to

analyze the non-uniform BdGe wavepacket reflections and,

in particular, the Andreev reflection in the studied structure

for s-wave and d-wave superconductors.

Using our generalized methodology of the relaxation

method that was presented in Ref. [8], we study now

properties of an unconventional SQUID. It is made by

placing a non-superconducting element close to the ring

shape or rectangular shape superconductor, which reduces

the SCOP in its neighborhood and thus creates possibly

a weak link. The possible geometry of such a structure is

depicted in Fig. 4c for the d-wave superconductor in

the absence of magnetic or electric fields. Note that the

proximity of a defect such as the occurrence of a non-

superconducting strip in contact with a d-wave supercon-

ductor strip lowers the magnitude of the d-wave component

of the order parameter and increases the magnitude of the

s-wave component, as indicated in Fig. 4a and b. This is

somehow similar to the situation around a vortex core

induced by the external magnetic field in a d-wave

superconductor [12]. Therefore, the given structure of FIJJ

geometry of a d-wave superconductor with nomagnetization

and no magnetic field should not always be recognized as

a weak link Josephson junction. A further study of this

structure in the case of non-zeromagnetic field is needed.We

denote our uJJ as the structure with FIJJ geometry, but with

no magnetization present as in the case of a normal strip on

the top of a superconducting strip. Extending the GL x2 � y2

formalism to account for properties of a d-wave FIJJ in a

wide temperature range is rather technical but it can be

obtained from the microscopic model, as indicated in the

work of Feder [21].

6 Coexistence of singlet and triplet phases in
FIJJ To account for the existence of singlet and triplet

components, the extension of results of Ref. [2] from one to

two dimensions is necessary.

Then in the general case of a d-wave superconductor–

ferromagnet system the SCOP has five components

ðcsðx; yÞ; cdðx; yÞ, cpxðx; yÞ; cpyðx; yÞ, cpzðx; yÞÞ and

three additional magnetization components occur as

ðMxðx; yÞ; Myðx; yÞ, Mzðx; yÞÞ, while the superconducting

gap Dðx; yÞ is given as

D ¼ cs þ cosð2fÞcd þ cosðf1Þcpx þ cosðf2Þcpy

þ cosðf3Þcpz;

(10)

where f depends on the crystal orientation and structure and

f1, f2, f3 depend on the orientation and magnetization of

the ferromagnetic bar and on the quality of the supercon-

ductor–ferromagnet interface.

In the conducted computations we have neglected the

occurrence of the triplet component in the superconductor

and the interaction term in the GL functional between

superconducting triplet and singlet components, triplet

superconductor order component and ferromagnet and

also the term accounting for mutual interaction between

singlet and triplet SCOPs and ferromagnet order parameter.

FollowingKuboki’s derivation of the extendedGL equations

from the microscopical model [13, 14], we obtain a similar

6 K. Pomorski and P. Prokopow: Field-induced Josephson junctions
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Figure 4 (online color at: www.pss-b.com) SQUID made of uJJ for d-wave superconductors with no magnetic field. (a) s-wave

SCOP distribution in d-wave uJJ SQUID. (b) d-wave SCOP distribution in d-wave uJJ SQUID. (c) Topology of d-wave uJJ SQUID.

c-axis is perpendicular to the picture plane.
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structure of free energy functional in the form

F ¼ Fs þ Ft þ Fst þ Fm þ Fsm þ Ftm þ Fstm þ Fsurf :

(11)

Denoting unit vectors in x and y directions by ex and ey
and introducing the notation

DxðyÞ ¼
�h

i
@xðyÞ �

2e

c
AxðyÞ; (12)

D ¼ exDx þ eyDy; (13)

we obtain the following components of the free energy

functional F:

Fs ¼

Z

d2r
�

asjcsj
2 þ bsjcsj

4 þ KsjDcsj
2

þ adjcdj
2 þ bdjcdj

4 þ KdjDcdj
2 þ g1jcsj

2jcdj
2

þ g1jcsj
2jcdj

2 þ g2

�

c2
dðc

�
dÞ

2 þ c:c:
�

þ Kds

�

ðDxcdÞðDxcsÞ
� � ðDycdÞðDycsÞ

� þ c:c:
�

�

;

(14)

Ft ¼

Z

d2r
�

apðjcpxj
2 þ jcpyj

2Þ þ bpðjcpxj
4 þ jcpyj

4Þ

þ gp1jcpxj
2jcpyj

2 þ gp2

�

c2
pxðc

�
pyÞ

2 þ c:c:
�

þ Kp1ðjDxcpxj
2 þ jDycpyj

2Þ

þ Kp2ðjDycpxj
2 þ jDxcpyj

2Þ

þ Kp3

�

ðDxcpxÞ
�ðDycpyÞ þ c:c:

�

þ Kp4

�

ðDycpxÞ
�ðDxcpyÞ þ c:c:

�

�

;

(15)

Fst ¼

Z

d2r
�

g3ðjcpxj
2 þ jcpyj

2Þjcsj
2

þ g4ðjcpxj
2 þ jcpyj

2Þjcdj
2

þ g5

�

ðc2
px þ c2

pyÞðc
�
s Þ

2 þ c:c:
�

þ g6

�

ðc2
px þ c2

pyÞðc
�
dÞ

2 þ c:c:
�

þ g7ðjcpxj
2 � jcpyj

2Þðc�
scd þ c:c:Þ

þ g8ðc
2
px � c2

pyÞðc
�
sc

�
d þ c:c:Þ

�

;

(16)

Fm ¼

Z

d2r amjMj2 þ bmjMj4 þ KmjrMj2
� �

; (17)

Fsm ¼

Z

d2r gms Mj j2jcsj
2 þ gmdjMj2jcmdj

2
� �

; (18)

Ftm ¼

Z

d2rgmp Mj j2 jcpxj
2 þ jcpyj

2
� �

; (19)

Fstm ¼

Z

d2r
�

Kspm ðDxcpxÞ
� þ ðDycpyÞ

�� �

cs

�
�

ðDxcsÞc
�
px þ ðDycsÞcpy

�

þ KsdpmM ðDxcpxÞ
� � ðDycpyÞ

�� �

cd

�
�

ðDxcdÞc
�
px � ðDycdÞc

�
py

�

þ c:c:
�

:

(20)

The last term should incorporate the interaction between

the ferromagnetic and superconducting layers and is given

as before:

Fsurf ¼

Z

surf

d2r
�

gdjcdj
2 þ gsjcsj

2

þ gpxjcpxj
2 þ gds cdc

�
s þ c:c:

� �

� tmm0m
�

;

(21)

where ga (a¼ d, s, px) and gds describe the suppression and

the scattering of the SCOP at the interface, respectively.

Here, the ferromagnet is treated simply as a source of the

magnetization at the interface, and m0 and tm denote the

value of m at the interface and its tunneling matrix element

to the superconducting side, respectively.

All coefficients having indices with a combination of

elements from the set s, d, p, m have to be determined from

microscopic theories such as the modified Gorkov theory of

d-wave superconductors or taken from material properties

such as the superconducting coherence length and the

magnetic field penetration depth, which depends on the

direction. The space of possible coefficients is large. It has

been derived from the Hubbard model [22] by Kuboki [13].

We have to solve 11 GL equations following the

variational principle of the S–F system. Having the SCOP

distribution and the magnetization distribution we can

construct the BdGe wavepackets.

It should be emphasized that similar considerations as

for a ferromagnet on the top of a superconducting strip can

also be applied to an antiferromagnetic strip on the top of a

superconductor strip. However, in such a case, the decrease

of the SCOP magnitude is expected to be much smaller. In

order to confirm the intuitive expectation the solution of

extended GL equations derived from the Hubbard model

should be obtained, which can be solved, e.g., by the usage of

the relaxation method, presented already in this work.

7 Discussion of FIJJ properties In this work the

LDOS was computed using the GLþBdGe approach (when

the SCOP from GL is used in BdGe) for the case of a two-

dimensional system when the non-superconducting and

non-magnetic material was placed on the top of an s-wave

superconductor, as depicted in Fig. 2 for two different

temperatures. Since the conductivity of the given structure is

proportional to the LDOS, such an obtained solution can be

verified experimentally. Additionally, the hybrid approach

using the GLþBdGe formalism significantly speeds up the

computation, because we use the thermodynamic approach

of the GL formalism, which omits a more detailed and

technically involving microscopic picture. However, at the
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same time such an approach lowers the precision of the

computation. Nevertheless, in such an approach we obtain a

qualitative structure of eigenenergies present in the FIJJ

structure. This gives ahint of the systemreaction to the external

microwave field as coming from external EM radiation.

For a thick superconducting strip and a thin ferromagnetic

layer on the top without an external magnetic field the

Josephsoneffectmaybeveryweakor not observable at all.Yet

bringing the whole structure into the external magnetic field

will eventually lower the SCOP, especially in the supercon-

ductor beneath the ferromagnetic bar, so it will separate one

reservoir of the superconducting electrons into two reservoirs.

If we place the given Josephson junction structure in an

external magnetic field, it is rather natural to expect a

reduction of the superconducting critical current. However,

if the FIJJ junction is in quasi-tunneling weak link regime,

the analogies of this structure with an S–F–S JJ start to be

apparent. In such a case the dependence of the junction

critical current on the magnetization of the F strip is

described by a damped sinusoidal function. Therefore, the

higher magnetization of the F strip does not always reduce

the critical current of the FIJJ.

Consider now the superconductors of the second type

with ferromagnetic material on the top. In those structures

magnetic field vortices can appear in certain situations.

The superconductor–ferromagnet interface generates a

vortex pinning mechanism depending on the number of

crystal defects in materials, direction of magnetization of the

ferromagnetic bar and initial configuration of the external

magnetic field. In the presence of the electric current flowing

via the FIJJ those vortices can move due to the Lorentz force

and generate additional dissipation in the system.

Hence, vortices affect both the DC and AC FIJJ current–

voltage characteristics. Therefore, the magnetic field

induced crossover from flux-flow to Josephson-junction

behavior is interesting, as pointed out by Horide [18]. In

particular, the presence of vortices should increase the

sensitivity of a d-wave FIJJ to detect microwave radiation,

since the vortex quasi-normal cores absorb EM radiation

more effectively than in an s-wave superconductor.

The physics of vortices in an s-wave superconductor is

far more simple than in the case of a d-wave superconductor,

as presented in Ref. [19]. In the same way, the properties of

vortices in FIJJ structures are simpler for an isotropic

superconductor than in the case of an anisotropic supercon-

ductor. It is important to note that the presence of vortices can

induce a Josephson junction in the S–SF–S (superconductor–

ferromagnet on top of superconductor–superconductor)

system.

8 Summary and outlook The SCOP and magnetiza-

tion for the MFIJJ were derived from the extended GL

equations. They can be used for future determination of the

basic transport properties of the FIJJ. The solution of the GL

equations for FIJJ structures can be characterized by two

regimes of the SCOP distribution named the constriction weak

link regime and the quasi-tunneling weak link regime. The

weak link constriction regime of the FIJJ is named due to the

fact that the SCOP distribution, which has a certain narrowing

caused by the presence of the non-superconducting strip, is

lowered, but it is not diminishing completely as depicted in

Figs. 2 and 3. Therefore, the transmission coefficient should be

rather high. On the other hand, the case of a quasi-tunneling

weak link Josephson junction is characterized by an almost

complete disappearance of the SCOP in the region under the

non-superconducting strip as it is in the S–F–S (supercon-

ductor–ferromagnet–superconductor) Josephson junction. In

such a case the transmission coefficient should be much

smaller than in the previous case.

When the magnetization of F (e.g., Fe) is high enough,

the superconductor under the F element becomes normal and

usually conductive, as it is the case of low-temperature

superconductors. However, the given superconductor can

also transfer to a normal state, which is insulating as in the

case of YBCO material (d-wave superconductor). Then

the insulating state can exist between two superconducting

states, justifying the use of the term: quasi-tunneling weak

link.

The transition from the constriction weak link to the

quasi-tunneling weak link has been obtained numerically for

s-wave superconductors by a continuous change of thickness

of the superconductor strip or by a continuous change of

the magnetization strength of the F bar. The existence of

the transition, as depicted in Fig. 3, gives the basis for

possible applications of FIJJs and tunable devices built from

FIJJs such as FIJJ SQUIDs. The tuning property of the FIJJ

should be confirmed experimentally. Similar reasoning

applies to the case of usage of a ferroic element instead of

a ferromagnetic one. In the limited temperature regime,

it is possible to transfer the SCOP and magnetization

fromGL equations to Usadel propagator equations. Then the

approximated current–voltage characteristics, critical super-

conducting current and critical superconducting temperature

can be obtained and related to the system geometry, external

magnetic field and magnetization profile of the FIJJ.
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