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Abstract

We consider an array of N Josephson junctions connected in parallel and explore the condition for

chaotic synchronization. It is found that the outer junctions can be synchronized while they remain

uncorrelated to the inner ones when an external biasing is applied. The stability of the solution

is found out for the outer junctions in the synchronization manifold. Symmetry considerations

lead to a situation wherein the inner junctions can synchronize for certain values of parameter.

In the presence of a phase difference between the applied fields, all the junctions exhibit phase

synchronization. It is also found that chaotic motion changes to periodic in the presence of phase

differences.

PACS numbers: 05.45.Xt, 05.45.Gg

∗Electronic address: rchitra@cusat.ac.in
†Electronic address: vck@cusat.ac.in

1

http://arXiv.org/abs/0805.3421v1
mailto:rchitra@cusat.ac.in
mailto:vck@cusat.ac.in


Due to the application of chaotic synchronization in secure communication

to brain modeling a great deal of investigation has been done in this field. The

presence of even a small phase difference between the applied fields was found

to desynchronize a completely synchronized system. Also the phase difference

was found to have application in taming chaos in dynamical systems. Recently

it was observed that the end lasers in an array of three laser system was found

to synchronize while it remained uncorrelated with the middle laser which orig-

inally connected the two. In this work we study an array of Josephson junctions

in the presence a phase difference between the driving fields and its effect on

synchronization and suppression of chaos.

I. INTRODUCTION

Chaos in Josephson junction (JJ) has been studied extensively after its presence was

demonstrated using numerical simulation [1]. When we treat JJs within the Stewart-

McCumber model, the equation describing the behaviour of JJ is identical to the equation

for a driven damped pendulum which has been studied theoretically for several routes to

chaos[2, 3]. Thus JJ becomes an ideal physical system to study chaos. The rf- biased JJs

find practical importance in the construction of devices like parametric amplifiers, volt-

age standards, pulse generators, SQUID for detection of very weak magnetic fields, etc.

[4, 5, 6]. For these devices, it is essential to avoid all types of noise, chaos etc. JJs consisting

of Superconductor-Insulator-Normal metal-Insulator-Superconductor (SINIS) showing non-

hysteretic I-V characteristics with high damping has been fabricated for programmable dc-

voltage standards [7] or ac-voltage standards based on synthesis of calculable wave forms[8].

Pecora and Carroll in 1990 reported that synchronization of chaotic systems [9] could

be achieved, since then different types of synchronization such as complete, generalized

and phase synchronization of chaotic oscillators have been described theoretically and ob-

served experimentally [10, 11]. Synchronized chaotic oscillations have been found in many

nonlinear systems like lasers, neural network, etc[12, 13]. Chaotic synchronization also find

application in communication. It was demonstrated using Rössler oscillators that during the

transmission of information about a stimulus through an active array, the stimulus created

the way to be transmitted by making the chaotic elements to phase synchronize [14]. The
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stability of synchronous state is analyzed by Lyapunov function method [15] and the mas-

ter stability approach [16]. Phase difference between the applied fields plays an important

role in suppressing chaos and the synchronization of chaotic systems. Duffing oscillator was

studied for the effect of phase difference on chaotic synchronization [17]. Josephson junction

has been investigated for both periodic and chaotic synchronization. Coupling between self

generated Josephson oscillations through a microwave transmission line was found to play

an important role in collective synchronization of JJ array [18]. In a system of two JJs in

parallel, the phase difference between the applied fields was found to bring chaotic motion

to a periodic one for a large range of parameter values [19]. A parallel array of coupled

short JJs linked together by inductors has been used to fabricate highly sensitive detectors

[20]. Although there is extensive work on synchronization of coupled JJs, studies on chaotic

synchronization of JJs is much less.

In this work we analyze a parallel array of N-coupled JJs with parameters lying in the

chaotic regime and study synchronization of the system. The paper is organized as follows.

In section II we discuss the model for an array of JJs linked in parallel with linking resistor

Rs in between. Section III contains the study of the synchronization in such an array and

discuss the stability of the synchronous solution. The effect of phase difference between the

applied fields on synchronization and its role in suppressing chaos is also discussed. Results

are summarized in section IV.

FIG. 1: Schematic representation of an array of JJ linked in parallel with a linking resistor Rs. 1

and 2 are the driving fields.
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II. THE MODEL

The equation of a single Josephson junction represented by the resistively and capacitively

shunted junction (RCSJ) model can be written by solving Kirchoff’s law as

~C

2e

d2φ

dt′2
+

~

2eR

dφ

dt′
+ ic sin φ = i′dc + i′0 cos(ωt′) (1)

where φ is the phase difference of the wave function across the junction, i′0 cos(ωt′) is the

driving rf - field and i′dc is the dc bias. The junction is characterized by a critical current ic,

capacitance C and normal resistance R. The coupled JJ considered here consists of a pair of

such junctions wired in parallel with a linking resistor Rs [21]. A schematic representation

of an array of JJ wired in parallel with linking resistors is given in fig 1. The equation of

motion for an array of N coupled current driven JJs can be written in the normalized form

as

φ̈1 + βφ̇1 + sinφ1 = idc + i0 cos(Ωt) − αs

[

φ̇1 − φ̇2

]

(2a)

...
...

...

φ̈i + βφ̇i + sin φi = αs

[

φ̇i+1 + φ̇i−1 − 2φ̇i

]

(2b)

...
...

...

φ̈N + βφ̇N + sin φN = idc + i0 cos(Ωt) − αs

[

φ̇N − φ̇N−1

]

(2c)

where i varies from 2 to N-1 and the dimensionless damping parameter β is defined as

β =
1

R

√

~

2eic
.

The normalized time scale is written as t = ωJ1t
′ where ωJ1 = (2eic1/~C1)

1

2 . The dc bias

current i′dc and the rf amplitude i′0 are normalized to the critical current ic1. The actual

frequency ω is re-scaled to Ω = ω/ωJ1 and the coupling factor is defined as αs = (R1/Rs) β.

The Josephson junction is chaotic for the parameter values β = 0.3, i0 = 1.2, ω = 0.6

and idc = 0.3. We fix these parameter values for the numerical simulations. The junctions

are taken to be identical and for a coupling strength of αs = 0.37, the outer junctions

synchronize while the inner junction remain uncorrelated with the two outer ones. It can be

seen from Fig 2(a) that the outer junctions are synchronized whereas Fig.2(b) shows that it

is uncorrelated with the middle junction for an array of three JJs.
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III. STABILITY ANALYSIS

In order to perform the stability analysis for the synchronized state of N-coupled Joseph-

son junctions, we first consider three JJs linked in parallel. In the first order form the three

identical junctions can be written as

φ̇1 = ψ1 (3a)

ψ̇1 = −βψ1 − sinφ1 + idc + i0 cos(Ωt) − αs [ψ1 − ψ2]

φ̇2 = ψ2 (3b)

ψ̇2 = −βψ2 − sinφ2 + αs [ψ1 + ψ3 − 2ψ2]

φ̇3 = ψ3 (3c)

ψ̇3 = −βψ3 − sinφ3 + idc + i0 cos(Ωt+ θ) − αs [ψ3 − ψ2]

From eq.3a and 3c it can be observed that the outer junctions are identical and symmetric

with interchange of variables in the absence of a phase difference θ between the applied fields.

Hence there exists an identical solution for the outer systems given by φ1 = φ3 = φ(t) and this

type of behavior where systems show identical behavior is called complete synchronization.

Due to asymmetry the middle junction may have different dynamics. The stability of the

synchronous solution of the outer junctions is analyzed by two methods.

We define the difference variables φ−
13 = φ1−φ3

2
and ψ−

13 = ψ1−ψ3

2
and the approximate

dynamics transverse to the synchronization manifold is obtained by linearizing the corre-

sponding subsystem consisting of the outer junctions. The equation may be given as

φ̇−
13 = ψ−

13 (4)

ψ̇−
13 = −βψ−

13 − cosφ+

13 sinφ−
13 − αsψ

−
13

Linearizing eq. 4 we get the approximate dynamics transverse to the synchronization man-

ifold. In terms of the Jacobian matrix we can rewrite the above equation as




φ̇−
1,3

ψ̇−
1,3



 =





0 1

cosφ1 −β − αs









φ−
1,3

ψ−
1,3



 ,

where sinφ−
1,3 ≈ φ−

1,3 and cos φ+

1,3 ≈ cos φ1 as φ1 ≈ φ3 in the synchronization manifold. The

eigen values of the matrix are

m1,2 = −
(αs + β)

2

[

1 ±

√

1 +
4 cosφ1

(αs + β)2

]

(5)
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The stability of the synchronous state is controlled by the eigen values m1,2 [22]. If m1,2

are complex conjugates with negative real part, the corresponding solution is stable. In the

above case the average of the term in the radical is found and it is a complex number with

real part greater than unity. The real part of the largest eigen value is thus found to be

negative and hence satisfy the criterion for stability of synchronization.

As a second test, we follow the method given by Landsman et.al [23] where the conditional

Lyapunov exponents are calculated with respect to the perturbation out of the synchroniza-

tion manifold. Eq. 3 reduces to a set of four equations in the synchronized state as the outer

junctions may be represented by a single set of equations. In terms of the synchronous solu-

tions φ(t) and ψ(t), we can define variables ∆φ(t) = φ1(t)− φ(t) and ∆ψ(t) = ψ1(t)− ψ(t).

Linearizing transverse to the synchronization manifold, we have

d∆φi
dt

= J∆φi (6)

and
d∆ψi
dt

= J∆ψi (7)

where i=1,3 and J is the Jacobian matrix evaluated at ∆φ(t) and ∆ψ(t). Thus we have




∆φ̇1,3

∆ψ̇1,3



 =





0 1

1 −β − αs









∆φ1,3

∆ψ1,3





∆φ1,3 and ∆ψ1,3 are the perturbations of the outer oscillators from the synchronous solution

{φ(t), ψ(t)} .

The Wronskian of the linearized system can be related to the trace of the matrix by the

Abel’s formula [23]

W (t) =

∣

∣

∣

∣

∣

∣

∆φ ∆ψ

∆φ̇ ∆ψ̇

∣

∣

∣

∣

∣

∣

= exp

(
∫ t

0

(−αs − β)dt′
)

where we have dropped the subscripts of the linearized variable. The Wronskian gives the

phase space dynamics of the system. Taking the natural log of the Wronskian we get

ln[W (t)] = ln |∆φ∆ψ̇ − ∆ψ∆φ̇| = −

∫ t

0

(αs + β)dt, (8)

which is a monotonically decreasing function of time. The sum of the conditional Lyapunov

exponents is given as,

M
∑

j=1

λj = lim
t→∞

1

t
ln | det(Φ(∆φ1,3,∆ψ1,3)(t)| (9)
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where Φ is the matrix solution of eqns. 6 and 7. The sum of the conditional Lyapunov

exponents can be now approximated as

λ1 + λ2 ≈ −(αs + β). (10)

The sum of the conditional Lyapunov exponents is negative indicating that the phase space

of the coupled system shrinks to a trajectory representing the synchronous solution. Thus

the two methods lead to the same conclusion.

FIG. 2: (a) The outer juntions are synchronized (b) Outer junction and middle junction is uncor-

related. The parameter values are β = 0.3, i0 = 1.2, ω = 0.6, idc = 0.3, αs = 0.37.

Now we analyze the subsystem constituted by the outer and the middle junctions. We

define new variables φ−
i2 = φi−φ2

2
and ψ−

i3 = ψi−ψ2

2
where i = 1, 3. As the outer junctions are

identical, it is enough to study any one subsystem. So considering the case with i = 1, we

write,

φ̇−
12 = ψ−

12 (11)

ψ̇−
12 = −βψ−

12 − cosφ+

12 sin φ−
12 +

1

2
[idc + i0 cos(Ωt)] − αs(

3

2
ψ−

12).

From Eq. 11 we conclude that in the presence of an external applied field it is not possible

to synchronize all the three junctions due to the asymmetry induced by the applied fields.
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However in the absence of an external field, an identical solution can exist for all the three

junctions. Extending the symmetry analysis to a system of N JJs coupled in parallell with

FIG. 3: (a) and (b) shows that the junctions are phase correlated. β = 0.3, i0 = 1.2, ω = 0.6, idc =

0.3, αs = 0.37and θ = 0.5π.

nearest neighbour coupling, the second and the (N − 1)th junction may have an identical

solution for certain parameter values. Similarly, the third and the (N − 2)nd junctions

may have identical solutions and so on. Thus in the case of an array, from symmetry

considerations we may deduce that N/2 solutions may exist if there are even number of

junctions in the array and N+1

2
solutions will be present for odd number of junctions. The

time series plot for an array of 7 and 8 junction is plotted in Fig.4. It can be observed

from Fig.4(a) that in an array of seven JJs the four solutions exists for the parameter range

considered. The fourth junction has an independent solution. In Fig.4(b) we have plotted

the time series for 8 JJs.

The presence of a phase difference between the applied fields changes the scenario com-

pletely. On the application of a small phase difference between the applied fields, the outer

junctions desynchronize and all the three junctions are thus uncorrelated. But for sufficiently

large values of phase differences, all the three junctions are found to be in phase synchro-
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FIG. 4: (a)shows the time series plot for an array of 7 JJs and (b) for 8 junctions. β = 0.3, i0 =

1.2, ω = 0.6, idc = 0.3, αs = 0.37and θ = 0.5π.

nization. Considering the difference variables ψ1,2, ψ1,3, ψ3,2 as defined earlier, we explain

the phenomena as follows. Due to the asymmetry that arises between the outer junctions in

the presence of the phase difference we need the extra variable ψ3,2 to analyze this situation.

The equations for the three difference variables may be written by substituting eq.3 as

ψ̇−
12 = −βψ−

12 − cosφ+

12 sin φ−
12 +

1

2
[idc + i0 cos(Ωt)] − αs(

ψ−
12

2
+ ψ−

32) (12a)

ψ̇−
13 = −βψ−

13 − cosφ+

13 sin φ−
13 + i′0 sin(Ωt+

θ

2
) − αs(ψ

−
13 − ψ−

32) (12b)

ψ̇−
32 = −βψ−

32 − cosφ+

32 sin φ−
32 +

1

2
[idc + i0 cos(Ωt+ θ)] − αs(

ψ−
32

2
+ ψ−

12), (12c)

where i′0 = i0 sin θ
2
. Thus each subsystems experiences a different driving field with the same
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frequency but different phases. Due to the phase relationship between the driving fields, a

definite phase relationship is found to exist between all three junctions.

The level of mismatch of chaotic synchronization can be given quantitatively by taking

the similarity function S(τ) as a time averaged difference between the variables ψi taken

with time shift τ [11]

S2(τ) =
〈[ψ1(t+ τ) − ψ2(t)]

2〉

[〈ψ2
1(t)〉] [〈ψ

2
2(t)〉]

1/2
(13)

and

S2(τ) =
〈[ψ1(t+ τ) − ψ3(t)]

2〉

[〈ψ2
1(t)〉] [〈ψ

2
3(t)〉]

1/2
. (14)

and searching for its minimum σ = minτS(τ). If ψ1(t) = ψ3(t), then S(τ) has a minimum

value σ = 0 for τ = 0. If both ψ1(t) and ψ3(t) are independent then S(τ) ≈ 1 for all the

time. Line 1 in Fig. 5 shows complete synchronization between the end junctions and line

2 shows that the outer and middle junctions are desynchronized when no phase difference

is present. A minimum of S(τ) indicates the the existence of a time shift between the two

variables related to the phase shift. The amplitudes are uncorrelated in this regime, but

phase correlation is present as indicated by lines 3 and 4 in the presence of a phase difference

between the applied fields. On the application of a phase difference of π/2 the dynamics

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

τ

S
(τ

)

(1)

(2)

(3)

(4)

0 0.5 1 1.5 2 2.5
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

τ

S
(τ

)

4

FIG. 5: (1) is S(τ) for variables ψ1&ψ3 , (2) for ψ1&ψ2. Line (1) shows complete synchronization

while the other is not synchronized. Both these lines are plotted with no phase difference applied

(3) and (4) gives the similarity function for the variables ψ1&ψ3 and ψ1&ψ2 in the presence of

phase difference θ = 0.5π. The second figure shows line 4 where the dip can be observed clearly.

changes to periodic one as can be observed from Fig. 6
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FIG. 6: The variables corresponding to the three JJs are ploted against time which indicates the

periodic behavior.

IV. RESULT AND DISCUSSION

We consider a parallel array of JJs with linking resistor Rs and the conditions for synchro-

nization is discussed. The outer junctions being symmetric, can possess identical solution

and hence may synchronize depending on the parameter values. Linear stability analysis is

done to find the stability of the synchronous solution of the outer junctions. The sum of

conditional Lyapunov exponents calculated for the outer sub-system is found to be negative

indicating stable synchronous state. From symmetry considerations we show that all three

junctions could be synchronized only in the absence of an external field. Similarly in an

array of N Josephson junctions, N/2 identical solutions may exist if the number of junctions

is even and N+1

2
solutions may exist if the number of junction is odd. In the presence of

a small phase difference, the system desynchronizes due to the asymmetry induced by the

phase difference. As the phase difference is increased, in the case of three junctions all the

three junctions act as if they are driven by different driving fields having the same frequency,

but different phases. A phase synchronization is observed between all the three junctions

and the motion becomes periodic. Thus, suppression of chaos can be obtained in Josephson

junction systems in the presence of a phase difference between the applied fields and this

property may find applications in the working of devices constructed using JJs.
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