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We consider microwave spectroscopy of Josephon junctions composed of hybridized Majorana
states in topological 1-D superconductors. We point out how spectroscopic features of the junction
appear in the current phase relation under microwave irradiation. Moreover, we discuss a way
to directly probe the nonequilibrium state associated with the 4π periodic Josephson effect. In
particular, we show how the microwave driving can be used to switch from a 4π to a 2π Shapiro
step in the current voltage relation.
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Josephson junctions in topological superconductors
differ from conventional superconductor junctions in sev-
eral fundamental ways. [1–4] Their low-energy Andreev
bound state spectrum can generically be well-separated
from the continuum spectrum above the superconduct-
ing gap. Moreover, the fermion parity structure of the
states is different, which is reflected e.g. in wave function
overlaps. These differences are due to the bound states
being formed through hybridization of Majorana states.

Several distinguishing features of these systems have
been proposed, [1, 3, 5–9] and first experimental evidence
of the relevant physics was recently obtained in semicon-
ductor nanowires. [10, 11] One major generic feature is
the 4π periodic ac Josephson effect. [1] It is a nonequi-
librium effect, in which the system retains memory of the
population of the bound states during time evolution of
the superconducting phase difference ϕ 7→ ϕ + 2π. This
results to an effective 4π periodic current-phase relation,
I(ϕ) ∼ Ic sin(ϕ/2), [1] the consequences of which are vis-
ible in Shapiro steps and other observables. [1, 3, 5–7]
Importantly, the expected double-frequency Shapiro step
feature was recently seen in an experiment [11].

A well-established way to probe the spectrum of a
quantum system (e.g. a qubit) is to drive it, and look
for resonances as a function of the frequency of the
drive. Driving stimulates transitions between energy
levels and thereby also induces a nonequilibrium state
in the system. This physics is in play in the Andreev
bound states in Josephson junctions [12–14] and Majo-
rana wires. [15, 16] Information obtained in this way can
also be useful in characterizing the special features of
topological superconductor junctions. For instance, a 4π
periodic Josephson effect is not necessarily of a topologi-
cal origin, [17] even though it is a strong indication of it,
but combined with additional knowledge of the spectrum
its accidental occurrence can be excluded.

Here, we suggest how microwave driving can be used as
a separate control parameter for tuning the magnitude of

FIG. 1: (Color online) Josephson junction in a 1D
(proximity-induced) topological superconductor. The two
Majorana states η1, η2 located at each side of the junction
are hybridized (Josephson energy EJ), whereas the remain-
ing two η3, η4 are spatially separated and weakly coupled
(coupling energies δj). The system is assumed to be current
biased and shunted with resistance R (as shown) or phase
biased (ϕ fixed), and driven with a finite frequency ωd.

the 4π periodic Josephson current, which does not require
crossing topological transitions and thereby adjusting the
level structure of the system, which may complicate in-
terpretation of the results. We also discuss how the level
structure of the junction is spectroscopically reflected in
the dc current in phase- and current-biased situations.
Model. We describe the physics of the Joseph-

son junction in topological superconductor (TJJ) by a
Bogoliubov–de-Gennes Hamiltonian HBdG(t). The time-
dependence originates from the time dependence of the
superconducting phase φ(x, t); we assume (see Fig. 1)
that to the left of the junction φ(x, t) = −ϕ(t)/2, x < 0,
and to the right, φ(x, t) = ϕ(t)/2, x > 0. Such a Hamilto-
nian can be conveniently rewritten in the corresponding
instantaneous Fock eigenbasis, [18]

H =

N
∑

n=1

ǫn(ϕ)(d
†
ndn −

1

2
) + ~

dϕ

dt

N
∑

m,n=−N

Mmn(ϕ)d
†
mdn ,

(1)

ar
X

iv
:1

30
3.

23
53

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  1

0 
M

ar
 2

01
3



2

FIG. 2: (Color online) Spectra and connections computed
in a Rashba nanowire model. (a) Andreev spectrum (ǫn > 0
shown for n ≤ 18). (b) Connections M1,2 (black line) and
M1,−2 (light line) as a function of phase difference. Model
connections from Eq. (3) (dotted lines) agree closely with the
numerical results. (c) Connections M2,n, 2 < n ≤ 18 between
a low-energy Andreev level and the continuum. The other
low-energy level is weakly coupled to the continuum, |M1,n| ≪
|M2,n|. (d) Schematic many-body spectrum with Landau-
Zener (PLZ) and continuum transitions (PD) indicated. Here,
|n1n2〉 denote the occupation numbers of levels 1 and 2.

where Mmn(ϕ) = − i
2 〈m,ϕ|[∂ϕ − i

τ̂3∂ϕφ
2 ]|n, ϕ〉 are the

connections between the instantaneous single-particle
eigenstates. τ̂3 is the third Pauli matrix (charge den-
sity operator) in the electron-hole space, and we choose
a basis such that d−n = d†n, ǫ−n = −ǫn.
The low-energy physics is captured by a model Hamil-

tonian for the hybridization of the Majorana states, [1]

H = iEJ cos
(ϕ

2

)

η1η2 + iδ1η1η3 + iδ2η4η2 , (2)

where ηj are the four Majorana operators in Fig. 1. The
resulting connections are M1,1 = M2,2 = 0, and

M±2,1(ϕ) =
EJ

8

δ∓

δ2∓ +
(

EJ

2

)2
cos2(ϕ/2)

sin
(ϕ

2

)

, (3)

where δ± = δ1± δ2. Away from the level crossing at ϕ =
π, these matrix elements are proportional to Majorana
state overlaps, which are exponentially small when the
length of the wire segments L/2 is large compared to the
superconducting coherence length ξ = ~vF /∆.
To compare with a specific microscopic theory, we

consider the connections in a semiconductor nanowire

model; [4, 7, 19, 20] the results in Figs. 2(a),(b) show
how Eqs. (2), (3) capture the low-energy features. [28]
The connections to the continuum at ǫ > ∆ are not ex-
ponentially small as shown in Fig. 2(c), and have a rela-
tively weaker dependency on ϕ. The energy gap ∆−EJ

depends on the transparency of the junction. [2]
Electromagnetic drive couples to the junction by in-

ducing a voltage V (t) = −(sd~ωd/e) sin(ωdt) across the
system, equivalent to a superconducting phase difference
ϕ(t) = 2e

~

∫ t
dt V (t) = 2sd cos(ωdt).

We concentrate on the population dynamics of the
current-carrying low-energy levels, and treat the coupling
to the continuum as a perturbation. [7] For simplicity,
we assume the continuum connections M have roughly
constant order of magnitude in the relevant energy range
around ±ǫ+ ~ωd [cf. Fig. 2(c)], that the continuum den-
sity of states is steplike, N (ǫ) = N θ(|ǫ| − |∆|), and that
the quasiparticle population in the continuum is negligi-
ble. The resulting master equation for the states 1 and
2 is

ρ̇ = L{ρ} = −i[H ′
0, ρ]−

2
∑

kk′=−2

[A(ǫk′) +A(ǫk)
∗] (4)

× {dk′PρPd†k −
1

2
[d†kdk′ , ρ]+} ,

H ′
0 = H0 +

i

2

∑

kk′=1,2

[A(ǫk′)−A(ǫk)
∗]d†kdk′ , (5)

A(ǫ) ≈ i~ΓD log

(

(~ωd)
2 − (ǫ−∆+ i~Γ0

2 )2

(~ωd)2 − (ǫ− Ec + i~Γ0

2 )2

)

, (6)

where ΓD = ~N|M |2s2dω
2
d is the transition rate, P =

(−1)d
†
1
d1+d†

2
d2 is the Fermion parity, and H0 the part

of Eq. (1) involving only levels 1 and 2. ReA(ǫ) ≈
π~ΓDθ(|ωd| − |ǫ−∆|). Ec is a cutoff energy, originating
from the fact that M ∼ ǫ−1 decays at energies ǫ ≫ ∆;
the results below are insensitive to it. Γ0 is the inverse
lifetime of the continuum levels, which are assumed to be
better coupled to external leads than the localized low-
energy bound states. For ∆ + ǫ2 > ~ωd > ∆ − ǫ2 [see
Fig. 2(d)], the result describes quasiparticles on level 2
absorbing energy from the field and escaping to the con-
tinuum, leading to depopulation (“cooling”). [13] The
opposite emission process is limited by the low quasipar-
ticle population in the continuum.
Current-phase relation. Consider first the phase bias-

ing condition, ϕ(t) = φ0 + 2sd cos(ωdt), in which the DC
part φ0 is kept fixed. In this setup, 4π periodic nonequi-
librium effects are not visible, but one can study spectro-
scopic features of the junction.
We augment Eq. (4) with quasiparticle poisoning

(parity non-conserving), relaxation (parity-conserving),
and dephasing described by phenomenological rates, for
which we assume values Γq,Γr ∼ 10−4EJ/~ and Γd ∼
10−3EJ/~, respectively. [7, 21, 22] Resulting DC cur-
rent 〈∂ϕH〉 is shown in Fig. 3. As in quantum point
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FIG. 3: (Color online) Time-averaged current-phase relation
I(φ0) as a function of excitation frequency ωd, keeping AC
amplitude fixed at ~sdωd = 0.1EJ and ΓD = 10−5EJ (lighter
color: larger current). We take ∆/EJ = 1.5 and δ+/EJ =
10−2, δ−/EJ = 10−3. The dashed line indicates the threshold
~ωd = ∆ − ǫ2(ϕ) for continuum transitions. The n-photon
resonances n~ωd = ǫ2(ϕ)− ǫ1(ϕ) between the Andreev bound
states for n = 1, 2 are indicated. The frequency-dependent
threshold near ϕ = π is due to LZ transitions, which play a
role when φ0 + 2sd > π.

contacts [13], resonant transitions can here be identified
with sharp dips in the current-phase relation at n-photon
resonances n~ωd = ǫ2(ϕ) − ǫ1(ϕ). The transition rate is
proportional to the connections M ∼ δ/EJ (forbidden [4]
if there is no overlap, δ1/2 = 0), but it is balanced against
the small rates Γq and Γr. The second apparent feature
is that at ∆+ǫ2(ϕ) > ~ωd > ∆−ǫ2(ϕ), the transitions to
continuum [13] depopulate level 2 and thereby increase
the current. Note that in conventional quantum point
contacts, the continuum excitation gap ∆− ǫ2 is zero at
ϕ = 0, whereas here it remains finite for all ϕ, reflecting
the qualitatively different energy spectrum.
Tuning the 4π periodic Josephson effect. The 4π peri-

odic Josephson effect [1, 2] under dc bias ϕ(t) = 2eV̄ t/~
in this system requires (i) Landau-Zener (LZ) transi-
tions at ϕ(t) = π + 2πn and (ii) a large gap between
the continuum and bound state spectra [see Fig. 2(d)],
which allows correlations between ϕ and ϕ + 2π be pre-
served. The former requires a transition probability
PLZ ≃ e−8πδ2/(EJ V̄ ) ≈ 1. [5] The latter can be modified
through the “cooling” effect discussed above. An addi-
tional high-frequency signal ∆ + EJ > ~ωd > ∆ − EJ

causes a transition to the lower-energy states with prob-
ability PD > 0 during a cycle from ϕ = 2πn − π to
ϕ = 2πn+ π.

The probability PD can be found by considering the
time evolution of Eq. (4) in the voltage-biased case.
Given initial condition ρ(t1) = |11〉〈11| (or |01〉〈01|) at
ϕ(t1) = −π + β, at ϕ(t2) = π − β we have PD =
1 − ρ01,01(t2) − ρ11,11(t2), which is shown in Fig. 4(a).
Here, β & δ/EJ excludes the LZ transition. The prob-
ability behaves as PD ≈ 1 − e−c~ΓD/eV , c ∼ π as the
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FIG. 4: (Color online) Tuning the 4π periodic Josephson
effect. (a) Relationship between the effective parameter PD

and the microscopic model, for ∆ = 1.5EJ and V̄ ≫ Γq,r,
δ2/EJ . (b) Effective current-phase relation, as obtained from
master equation Eq. (4) with ~ωd/EJ = 1.35 (solid lines),
and the analytical result Eq. (10) with PD from Fig. 4(a)
(dashed lines). (c) The 4π Shapiro kink for PLZ = 1 and
PD = 0, 0.25, 0.5 from Eq. (8). For PD = 0 the result is
shown as a dotted line; the solid line indicates an exact result
without the mean-field approximation. (d) Composite result
from Fig. 4(c) and Eq. (10) for the Shapiro steps with param-
eters RIc/(~ωr) = 0.2, sr ≡ RIr/(~ωr) = 0.5, PLZ = 1 and
different PD. The curves are offset horizontally for clarity.

transition rate increases, in agreement with a Landau-
Zener type argument, and is finite for ~ωd & ∆− EJ .
In the experimentally relevant [11] Shapiro step exper-

iment, [23] the system is fed an additional ac current
Ir sin(ωrt), and the 4π periodicity manifests as a kink
in the dc-current-dc-voltage relation Ī(V̄ ) at eV̄ = ~ωr,
whereas the first 2π step resides at eV̄ = ~ωr/2. Here,
we assume the bias current Ib(t) = Ī + Ir sin(ωrt) +
Id sin(ωdt) contains a further high-frequency component
ωd ≫ ωr which induces transitions to the continuum. To
find the Shapiro steps we derive a semiclassical equation
for the phase [23] by expanding the effective Keldysh ac-
tion of the electromagnetic circuit in Fig. 1 to second
order in quantum fluctuations ϕq, [17, 18, 24]

S[ϕ] ≃ −
1

e

∫ ∞

−∞

dt [
~

2eR
ϕ̇cl(t)− Ib(t) + IJ [ϕ

cl](t)]ϕq(t)

(7)

+
i

e2

∫ ∞

−∞

dt dt′ [
kBTδ(t− t′)

R
+

PJ [ϕ
cl](t, t′)

2
]ϕq(t)ϕq(t′) .

The current IJ(t) = 〈Î(t)〉 and noise PJ(t, t
′) =
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1
2 〈{Î(t), Î(t

′)}〉 functionals can in principle be obtained
from the master equation. Considering the part
i
e

∫∞

−∞
dt′ θ(t − t′)PJ [ϕ

cl](t, t′)ϕq(t′) in the last term as
a mean field (well-defined on time scales longer than
the relaxation/quasiparticle poisoning time), and assum-
ing the effect of the junction on the phase dynamics is
small (IJ < Īb, PJ < Ī2b ), the saddle point becomes (c.f.
Ref. 17)

1

2R
∂tϕ∗(t) + IJ [ϕ∗](t) + I

(2)
J [ϕ∗](t) = Ib(t) , (8)

I
(2)
J [ϕ∗](t) ≃

−i

e

∫ t

−∞

dt′ dt′′
δPJ [ϕ∗](t, t

′)

δϕ(t′′)
DR(t′′, t′) .

(9)

The correlation function of the Ohmic environment cir-
cuit is DR(t, t′) = − 2ie2R

~
θ(t − t′), DR(t, t) = 0. The

4π periodic memory effects arise solely from the corre-
lation function PJ , as the expectation value IJ must be
invariant under translation ϕ 7→ ϕ+ 2π.
To find analytical results, we evaluate Eq. (8) in a

simplified model retaining only the main physics (cf.
Ref. 22): we neglect quantum coherence, and consider
only the average populations p+ =

ρ11,11+ρ01,01

2 , p− =
ρ10,10+ρ00,00

2 of the two upper and lower many-body states
[see Fig. 2(d)]. The time evolution is constructed from
LZ transitions p± 7→ (1 − PLZ)p± + PLZp∓ at ϕ =
π + 2πn, and continuum relaxation p+ 7→ (1 − PD)p+,
p− 7→ p−+PDp+ at ϕ = 2πn. Under this approximation,
the IJ and PJ functionals can be found, [21] and the IV
curve is obtained from the time average of Eq. (8).
First, continuum transitions increase the magnitude

of the 2π Shapiro steps, as they remove quasiparti-
cles from the low-energy levels. This is determined
by the effective current–phase relation IJ [ϕ](t). For
slow or small deviations around the trajectory ϕ(t) =
2V̄ t, it can be approximated by the time-local relation
IJ(ϕ(t)) = Tr ρ0(V̄ , ϕ(t))Î(ϕ(t)) in the periodic steady
state ρ0(V̄ , ϕ) = ρ0(V̄ , ϕ+ 2π). We find (V̄ > 0)

IJ = IcPD

(1− PLZ) sin(
ϕ
2 ) sgn(cos(

ϕ
2 )) + PLZ | sin(

ϕ
2 )|

1− (1− PD)(1− 2PLZ)
,

(10)

shown in Fig. 4(b). At low excitation eRIr/(~ωr) ≪
1 the resulting first Shapiro step at 2eV̄ /(~ωr) = 1 is
similar to the supercurrent step at V̄ = 0, but with a
smaller effective supercurrent Ic,1 = 2eRIJIr/(~ωr). [29]
The 4π periodic features are contained in the time av-

erage I
(2)
J = I

(2)
J0 +δI

(2)
J . Here, I

(2)
J0 ≃ RI2c /(2V̄ ), and the

part δI
(2)
J proportional to I2r is illustrated in Fig. 4(c).

Increasing PD > 0 cuts off the eV̄ = ~ωr resonance in
the IV curve.
For PLZ = 1 and PD → 0 the correlation function fac-

torizes, PJ [ϕ](t, t
′) = I2c sin(ϕ(t)/2) sin(ϕ(t

′)/2), so that
Eq. (7) can be transformed [24, 25] to the stochastic equa-
tion ~

2eR∂tϕ(t)+I sin(ϕ(t)/2) = Ib(t)+ ξ(t) where I and

the thermal noise ξ(t) are Gaussian random variables.
This result is also shown in Fig. 4 for comparison. Note
that phase diffusion due to a finite temperature also sup-
presses the Shapiro steps, which is not taken into account
in the figures.

Combining the steps from IJ and I
(2)
J , we obtain

Fig. 4(d), which shows how the IV curve reflects the
change in periodicity from 4π to 2π when PD increases.
This switching is tunable, and can be used to establish
both the size of the gap ∆ − EJ and the way the effect
is directly related to the nonequilibrium state. Namely,
in junctions with only 2π periodic Josephson effect, the
high-frequency drive has no effect on the Shapiro steps
within our model.

Summary. In summary, we consider microwave spec-
troscopy of Josephson junctions formed from hybridized
Majorana bound states. We discuss what spectroscopic
features manifest in a phase-biased situation, and how ac
excitation can be used to tune the nonequilibrium state
in the 4π periodic Josephson effect. High-frequency prob-
ing (~ωd ∼ 400mK×kB) was achieved experimentally in
Ref. 26 for superconducting quantum point contacts, and
we expect high-frequency manipulation of junctions with
Majorana bound states would also be feasible.

This work is supported by the Academy of Fin-
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Phenomenological rates

Quasiparticle poisoning (q), relaxation (r) and dephasing (d) can be described with the master equation Eq. (4) of
the main text, by adding phenomenological rate terms: [7, 22]

Lq{ρ} = Γq

2
∑

k=−2

X (dkP ){ρ} , (11)

Lr{ρ} = Γr[X (d2d1) + X (d†1d2)]{ρ} , (12)

Ld{ρ} = Γd sin
2
(ϕ

2

)

∑

k=1,2

X (d†kdk){ρ} , (13)

X (A){ρ} ≡ AρA† −
1

2
[A†A, ρ]+ . (14)

Similar terms can also be derived by integrating out a bosonic bath. [27] The dephasing rate is proportional to
|∂ϕǫ2(ϕ)|

2, hence the phase dependence. Assuming QP poisoning time of order 1µs and a Josephson energy of
EJ = 100mK, we have ~Γq ≃ 10−4EJ . With environmental impedance R ∼ 1Ω, the relaxation rate Γr is also
expected to be of a similar magnitude. [7] In the main text, we assumed the dephasing rate is ~Γd = 10−3EJ .
However, as long as ~Γd ≪ ~ωd, EJ , dephasing affects the results here only slightly because they do not require
quantum coherence.

Simplified master equation

Below, we discuss a simplified model, which describes the quasiparticle physics of the Andreev bound states on
a semiclassical level. This enables us to obtain analytical results for the Shapiro steps, and we can compare its
predictions to those of the more detailed microscopic model.
First, we assume the dephasing in the system is large enough, so that quantum coherence plays no role on time

scales of ~/(eV̄ ) (i.e. between two consequent Landau-Zener transitions). Under this assumption, the density matrix
is projected as ρ 7→ diag ρ. Further, assuming that the lower and upper two many-body levels are equivalent (i.e.,
ǫ1 ≈ 0) the system is described by the populations p+ = (ρ11,11 + ρ01,01)/2 and p− = (ρ10,10 + ρ00,00)/2. This defines
a linear projection superoperator P{ρ} = (p+, p−)

T . Effect of Landau-Zener (LZ) and continuum (D) transitions

can then be taken into account with projected propagators U(t, t′) = PT e
∫

t

t′
dt′′ L(t′′)PT of the master equation. For

time evolution between ϕ(t′) = π − β 7→ ϕ(t) = π + β and ϕ(t) 7→ ϕ(t′′) = 3π − β with β ∼ δ/EJ ≪ 2π we have:

ULZ ≡ PU(t, t′)PT ≃

(

1− PLZ PLZ

PLZ 1− PLZ

)

, UD ≡ PU(t′′, t)PT ≃

(

1− PD 0
PD 1

)

. (15)
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As a further simplification, we assume below that the continuum relaxation occurs instantaneously when the phase
difference crosses the points ϕ = 2πn. The current superoperator Î{ρ} = P e

2~ [∂ϕH, ρ]+P
T in this representation is

Î ≃
e

~

(

∂ϕǫ2(ϕ) 0
0 −∂ϕǫ2(ϕ)

)

. (16)

This allows straightforward approximation of the correlation functions required for the effective action.

Of importance here is the time evolution over a single period, ϕ 7→ ϕ + 2π (assuming ϕ(t) is monotonically
increasing):

Uc(ϕ) = U(ϕ+ 2π, ϕ) =

{

UDULZ , 0 < ϕ < π

ULZUD , π < ϕ < 2π
. (17)

This determines the cyclic steady state v0 = P{ρ0} of the system: Uc(ϕ)v0(ϕ) = v0(ϕ), and the transient state
Uc(ϕ)v1(ϕ) = λ1v1(ϕ). Here, the decay factor for the transient state is λ1 = (1− PD)(1− 2PLZ) and is independent
of ϕ. Computing IJ = Tr Îρ0 = 1T Îv0 we find Eq. (10) of the main text.

It is now convenient to define the projection superoperators Q0(ϕ) = v0(ϕ)1
T and Q1(ϕ) = 1−Q0(ϕ) to the steady-

state and transient subspaces. These satisfy Q0(ϕ)Uc(ϕ) = Uc(ϕ)Q0(ϕ) = Q0(ϕ), Q1(ϕ)Uc(ϕ) = Uc(ϕ)Q1(ϕ) =
λ1Q1(ϕ), Q0(ϕ)

2 = Q0(ϕ), and Q1(ϕ)
2 = Q1(ϕ).

We assume the drive

ϕ∗(t) = φ0 + 2eV̄ t/~+ 2sr[cos(ωrt+ φr)− cos(φr)] . (18)

When eV̄ and ~ωr are not exactly commensurate, long-time averages of periodic functions of ϕ∗(t) can be computed
by averaging over φ0 and φr. The frequency component ωd inducing the continuum transitions does not directly
couple to the low-frequency dynamics, and is not included here for simplicity.

We can now evaluate the time-average of Eq. (9) of the main text under drive (18). First, we remark that
δ

δϕcl(t′′)
PU(t, t′)PT ≈ 0 within our approximations (see also Ref. 17). Moreover, DR(t, t) = 0, so that only one

term contributes in the expression

DR(t′′, t′)
δ

δϕcl(t′′)
〈Î(t)Î(t′)〉 = DR(t′′, t′)〈(∂ϕÎ)(t)Î(t

′)〉δ(t− t′′) . (19)

Evaluating now the long-time average and changing integration variables, we find

I
(2)
J [ϕ∗](t) = −2R

∫ 2π

0

dφ0

2π

∫ 2π

0

dθ Tr[(∂φÎ)(θ + φ0)U(θ + φ0, φ0)Q1(φ0)Î(φ0)Q0(φ0)]G(θ) , (20)

G(θ) =
e

~

∞
∑

m=0

∫ 2π

0

dφr

2π

(1− PD)m(1− 2PLZ)
m

∂tϕ∗(t∗(θ + 2πm, 0, φr))

=
1

2V

1

1− (1− PD)(1− 2PLZ)
+

(sr~ωr)
2

4V̄ 3

cos( θ~ωr

2eV̄
)− (1− PD)(1− 2PLZ) cos(

(2π−θ)~ωr

2eV̄
)

sin(π~ωr

eV̄
)2 + [cos(π~ωr

eV̄
)− (1− PD)(1− 2PLZ)]2

+O(s4r) .

(21)

The function t∗(θ, φ0, φr) is defined by ϕ∗(t∗(θ, φ0, φr)) = θ.

All information about the 4π periodicity and the drive is contained in the factor G(θ). For PLZ = 0, the maximum
amplitude is obtained when the drive is 2π periodic in θ, and for PLZ = 1 when it is 4π periodic. Moreover, PD > 0
suppresses correlations between cycles, and cuts them off completely at PD = 1.

Equation (20) can be evaluated analytically, in the leading order in the drive amplitude sr. In the interesting case
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FIG. 5: Time-averaged current-phase relation for a nanowire system. As Fig. 3 in the main text, but for the nanowire
system whose spectrum and connections are displayed in Fig. 2, corresponding to parameters given in [28]. The wire was
chosen long, so that the energy splittings δ± of the Majorana states are small, and the resonances corresponding to transitions
between the low-lying bound states are weak. They are more pronounced in shorter wires, as illustrated in Fig. 2 of the main
text. Resonances associated with transitions to continuum levels are not similarly suppressed. The assumed continuum inverse
lifetime is Γ0/EJ = 10−3.

of PLZ = 1, we obtain

I
(2)
J = I

(2)
J,0 + δI

(2)
J +O(s4r) (22)

I
(2)
J,0 =

2(1− PD)[(4− π)PD + 2π]

(2− PD)3π

RI2c
V̄

(23)

(eR)−1I−2
c δI

(2)
J = −

2(1− PD)P 2
Ds2r(~ωr)

3 sin
(

π~ωr

eV̄

)

π(PD − 2)2(eV̄ − ~ωr)2(eV̄ + ~ωr)2
(

P 2
D − 2PD cos

(

π~ωr

eV̄

)

− 2PD + 2 cos
(

π~ωr

eV̄

)

+ 2
) (24)

−
4(1− PD)PDs2r(~ωr)

2 cos
(

π~ωr

2eV̄

)

π(PD − 2)eV̄ (eV̄ − ~ωr)(eV̄ + ~ωr)
(

P 2
D − 2PD cos

(

π~ωr

eV̄

)

− 2PD + 2 cos
(

π~ωr

eV̄

)

+ 2
)

+
(1− PD)s2r(~ωr)

2

(PD − 2)2eV̄ (eV̄ − ~ωr)(eV̄ + ~ωr)
.

This result is plotted in Fig. 4 of the main text. Note that it applies in the limit where the junction has a small effect
on the dynamics of the phase ϕ — that is, Eq. (18) is valid. Divergences (e.g. V̄ → 0) indicate a breakdown of this
approximation.

Discrete continuum spectrum

The level spacing in the continuum part of the energy spectrum in nanowires is not necessarily small, for instance
in a proximity nanowire setup where the effective energy gap ∆ in the nanowire is smaller than the gap ∆S of the
proximity superconductor inducing it. Our main results apply also in this case — Figs. 5 and 6 show that only limited
qualitative changes are expected from the discreteness of the continuum spectrum.
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FIG. 6: Probability of continuum relaxation for a nanowire system. As Fig. 4(a) in the main text, but for the nanowire system
whose spectrum and connections displayed in Fig. 2, and shown as a function of sd with fixed eV = 0.01EJ . The offset from
zero is due to a finite spontaneous quasiparticle poisoning and relaxation with rates Γr,q/EJ = 10−4. The result is not sensitive
to continuum lifetime Γ−1

0 .


